Researchers take key step toward growing human organs in laboratory

May 16, 2018 by Steve Lundeberg, Oregon State University
Credit: CC0 Public Domain

Researchers have learned that precursor cells for skeletal muscles actually also give rise to neurons, blood vessels, blood cells and immune cells, pushing science one step closer to generating body parts in a laboratory.

Findings were published today in Scientific Reports.

Combining developmental biology, genetics and bioinformatics, scientists at Oregon State University confirmed that Pax3+ cells act as a multifaceted stem cell niche for multiple organs at embryonic stages.

"We now have the ability to label cells based on expression profiling of sequence-specific transcription factors," said corresponding author Chrissa Kioussi, professor in the OSU College of Pharmacy. "We can give a molecular code to each cell, to make it distinct in time and space—during the progression of a cell the code changes. That's beautiful because now we can discover niches, stem cell pockets, and we can use this information to fix so many genetic or environmentally caused disorders. This gives us the possibility to make an entire cell lineage, or an entire organ, in a petri dish."

Using a mouse embryo model, Kioussi and collaborators in Oregon State's colleges of Veterinary Medicine and Engineering compared of the Pax3+ cell population over several days. They isolated lineage-traced cells from forelimbs at different embryonic days and performed whole-transcriptome profiling via RNA sequencing.

"That let us identify genes involved in the skeletal, muscular, vascular, nervous and immune systems, all of which go into making a functional limb," Kioussi said. "Expression of genes related to the immune, skeletal and vascular systems showed big increases over time, which suggests Pax3+ cells give rise to more than muscles—they're involved in patterning and the three-dimensional formation of the forelimb through multiple systems."

The research opens the potential to use stem cell pockets, for example, to grow a new arm or leg or other organ for someone who's lost a body part to accident or disease.

"That cell population can give rise to so many different cell types, we can use it at the development stage and allow it to become something else over time," Kioussi said. "It's a great source we have to fix different organs with issues from injury, toxicity from drugs, anything that can generate cell death in any part of our body. A genetic program that runs during embryogenesis normally generates adult cell types. We can identify these and be able to generate not one but four different organs from them—this is a prelude to making in a lab."

She likens the research to a mechanic taking apart an engine down to every last nut, bolt and washer.

"An engine has so many little parts, and you can't fix a broken engine if you don't know what all of these little parts do," she said. "Likewise, you can't make a limb if you don't know about all of the cell parts within the limb. You can't use only bone or only muscle or only veins, you need everything working together."

Explore further: Artificial muscles promise to speed up testing of treatments for muscle diseases

More information: Arun J. Singh et al, FACS-Seq analysis of Pax3-derived cells identifies non-myogenic lineages in the embryonic forelimb, Scientific Reports (2018). DOI: 10.1038/s41598-018-25998-1

Related Stories

Artificial muscles promise to speed up testing of treatments for muscle diseases

May 9, 2018
Artificial muscles grown from human stem cells could pave the way forward for treating muscle diseases, according to new research led by UCL.

Switch discovered to convert blood vessels to blood stem cells in embryonic development

March 20, 2018
A switch has been discovered that instructs blood vessel cells to become blood stem cells during embryonic development in mice. Using single-cell technology, researchers from the Wellcome Sanger Institute in Cambridge and ...

More surprises about blood development—and a possible lead for making lymphocytes

January 22, 2018
Hematopoietic stem cells (HSCs) have long been regarded as the granddaddy of all blood cells. After we are born, these multipotent cells give rise to all our cell lineages: lymphoid, myeloid and erythroid cells. Hematologists ...

Recommended for you

New blood test to detect liver damage in under an hour

May 24, 2018
A quick and robust blood test that can detect liver damage before symptoms appear has been designed and verified using clinical samples by a team from UCL and University of Massachusetts.

Gut bacteria play key role in anti-seizure effects of ketogenic diet

May 24, 2018
UCLA scientists have identified specific gut bacteria that play an essential role in the anti-seizure effects of the high-fat, low-carbohydrate ketogenic diet. The study, published today in the journal Cell, is the first ...

Selective neural connections can be reestablished in retina after injury, study finds

May 24, 2018
The brain's ability to form new neural connections, called neuroplasticity, is crucial to recovery from some types of brain injury, but this process is hard to study and remains poorly understood. A new study of neural circuit ...

Space-like gravity weakens biochemical signals in muscle formation

May 23, 2018
Astronauts go through many physiological changes during their time in spaceflight, including lower muscle mass and slower muscle development. Similar symptoms can occur in the muscles of people on Earth's surface, too. In ...

Eating at night, sleeping by day swiftly alters key blood proteins

May 21, 2018
Staying awake all night and sleeping all day for just a few days can disrupt levels and time of day patterns of more than 100 proteins in the blood, including those that influence blood sugar, energy metabolism, and immune ...

Hotter bodies fight infections and tumours better—researchers show how

May 21, 2018
The hotter our body temperature, the more our bodies speed up a key defence system that fights against tumours, wounds or infections, new research by a multidisciplinary team of mathematicians and biologists from the Universities ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

forumid001
5 / 5 (1) May 16, 2018
this kind of research is most challenging and most valuable.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.