Switch discovered to convert blood vessels to blood stem cells in embryonic development

March 20, 2018, Wellcome Trust Sanger Institute

A switch has been discovered that instructs blood vessel cells to become blood stem cells during embryonic development in mice. Using single-cell technology, researchers from the Wellcome Sanger Institute in Cambridge and the European Molecular Biology Laboratory in Rome discovered that two sets of specific factors in the cells work against each other, and when the balance of these changes, the vascular tube cells convert to free blood cells.

Reported in eLife, these findings could pave the way for further research into creating new for transplants and for understanding cancer development.

Blood vessels and cells develop from stem cells in the embryo. In fact, the blood stem cells, responsible for the generation of all blood cell types, develop from the which line the walls of blood vessels. This process happens in fish, birds and mammals, and is critical for the formation of blood cells. However how these vascular cells decide when to transform into blood stem cells was unknown.

To understand the process of blood cell development the researchers studied seven factors -—known to be important in blood cancers, using a powerful new technology called single cell transcriptomics. They discovered that in mouse embryo cells that were transitioning between vascular cells and blood cells, all seven of these factors were expressed together. However, when they engineered various combinations of these transcription factors into embryonic stem cell lines (ESCs), used to model embryonic blood development in the dish, they discovered the factors split unexpectedly into two distinct sets, one supporting the vascular cell fate and the other the blood program.

The researchers discovered there was a balance between the two sets of transcription factors. High levels of each set of transcription factors acted as a switch for the mouse embryo to choose whether to maintain vascular cells, or to develop them into blood stem cells.

Dr. Martin Hemberg, a corresponding author on the paper from the Wellcome Sanger Institute, said: "This was the first time that anyone has been able to show how a group of transcription factors causes a vascular cell to choose to develop into a blood stem cell, and demonstrates the power of single-cell transcriptomics for characterising really complex systems of transcription factors. Using this technology, we could see the exact genes that were switched on in every single cell, and found that the transcription factors acted as a fork in the road of development of blood cells."

The study was highly technically challenging. Not only was it difficult to express so many transcription factors simultaneously in ESCs, it was also the first time that single-cell transcriptomics had been used to study a large complex of transcription factors.

Dr. Tallulah Andrews, joint second author on the paper from the Wellcome Sanger Institute, said: "This was a very challenging computational problem as there was a huge network of interactions in the complex that needed to be unravelled. By applying recent advances in statistics to this biological question, we were able to predict that some of the transcription factors were acting in opposition to each other like a switch, rather than working together, which the study was then able to prove experimentally."

The knowledge gained in the study could aid further research towards the creation of blood stem cells for use in transfusions or blood cancer treatments, and could also help in the understanding of metastasis, which is when cancer spread to other organs.

Dr. Christophe Lancrin, a corresponding author on the paper from the European Molecular Biology Laboratory, Rome, said: "We have revealed the gene regulatory network responsible for switching off the vascular cell fate and switching on the blood program to generate . Interestingly, the process of metastasis in cancer also involves changes in cell states and may use a similar process to the one we have discovered. If we could better understand how the factors responsible for different cell states compete with each other we could begin to think of ways to specifically inhibit this process and improve the chance of survival of cancer patients."

Explore further: How blood vessels are formed

More information: Isabelle Bergiers et al, Single-cell transcriptomics reveals a new dynamical function of transcription factors during embryonic hematopoiesis, eLife (2018). DOI: 10.7554/eLife.29312

Related Stories

How blood vessels are formed

September 15, 2017
Researchers at Heidelberg University have discovered a crucial biological step that regulates the formation of blood vessels. They were able to show that the proteins YAP and TAZ play an important role in this process. The ...

Epigenetic program leading to vessel differentiation

May 19, 2017
Clarification of how human blood vessels are constructed is desperately needed to advance regenerative medicine. A collaborative research group from Kumamoto University, Kyoto University, and the University of Tokyo in Japan ...

Modular gene enhancer promotes leukemia and regulates effectiveness of chemotherapy

January 18, 2018
Every day, billions of new blood cells are generated in the bone marrow. The gene Myc is known to play an important role in this process, and is also known to play a role in cancer. Scientists from the German Cancer Research ...

Approaching a decades-old goal: Making blood stem cells from patients' own cells

May 17, 2017
Researchers at Boston Children's Hospital have, for the first time, generated blood-forming stem cells in the lab using pluripotent stem cells, which can make virtually every cell type in the body. The advance, published ...

Recommended for you

Gene plays critical role in noise-induced deafness

October 19, 2018
In experiments using mice, a team of UC San Francisco researchers has discovered a gene that plays an essential role in noise-induced deafness. Remarkably, by administering an experimental chemical—identified in a separate ...

Functional engineered oesophagus could pave way for clinical trials 

October 18, 2018
The world's first functional oesophagus engineered from stem cells has been grown and successfully transplanted into mice, as part of a pioneering new study led by UCL.

New findings cast light on lymphatic system, key player in human health

October 16, 2018
Scientists at the Oklahoma Medical Research Foundation have broken new ground in understanding how the lymphatic system works, potentially opening the door for future therapies.

New model suggests cuffless, non-invasive blood pressure monitoring possible using pulse waves

October 16, 2018
A large team of researchers from several institutions in China and the U.S. has developed a model that suggests it should be possible to create a cuffless, non-invasive blood pressure monitor based on measuring pulse waves. ...

Age-related increase in estrogen may cause common men's hernia

October 16, 2018
An age-related increase in estrogen may be the culprit behind inguinal hernias, a condition common among elderly men that often requires corrective surgery, according to a Northwestern Medicine study was published Oct. 15 ...

Income and wealth affect the mental health of Australians, study shows

October 16, 2018
Australians who have higher incomes and greater wealth are more likely to experience better mental health throughout their lives, new research led by the Bankwest Curtin Economics Centre has found.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.