Switch discovered to convert blood vessels to blood stem cells in embryonic development

March 20, 2018, Wellcome Trust Sanger Institute

A switch has been discovered that instructs blood vessel cells to become blood stem cells during embryonic development in mice. Using single-cell technology, researchers from the Wellcome Sanger Institute in Cambridge and the European Molecular Biology Laboratory in Rome discovered that two sets of specific factors in the cells work against each other, and when the balance of these changes, the vascular tube cells convert to free blood cells.

Reported in eLife, these findings could pave the way for further research into creating new for transplants and for understanding cancer development.

Blood vessels and cells develop from stem cells in the embryo. In fact, the blood stem cells, responsible for the generation of all blood cell types, develop from the which line the walls of blood vessels. This process happens in fish, birds and mammals, and is critical for the formation of blood cells. However how these vascular cells decide when to transform into blood stem cells was unknown.

To understand the process of blood cell development the researchers studied seven factors -—known to be important in blood cancers, using a powerful new technology called single cell transcriptomics. They discovered that in mouse embryo cells that were transitioning between vascular cells and blood cells, all seven of these factors were expressed together. However, when they engineered various combinations of these transcription factors into embryonic stem cell lines (ESCs), used to model embryonic blood development in the dish, they discovered the factors split unexpectedly into two distinct sets, one supporting the vascular cell fate and the other the blood program.

The researchers discovered there was a balance between the two sets of transcription factors. High levels of each set of transcription factors acted as a switch for the mouse embryo to choose whether to maintain vascular cells, or to develop them into blood stem cells.

Dr. Martin Hemberg, a corresponding author on the paper from the Wellcome Sanger Institute, said: "This was the first time that anyone has been able to show how a group of transcription factors causes a vascular cell to choose to develop into a blood stem cell, and demonstrates the power of single-cell transcriptomics for characterising really complex systems of transcription factors. Using this technology, we could see the exact genes that were switched on in every single cell, and found that the transcription factors acted as a fork in the road of development of blood cells."

The study was highly technically challenging. Not only was it difficult to express so many transcription factors simultaneously in ESCs, it was also the first time that single-cell transcriptomics had been used to study a large complex of transcription factors.

Dr. Tallulah Andrews, joint second author on the paper from the Wellcome Sanger Institute, said: "This was a very challenging computational problem as there was a huge network of interactions in the complex that needed to be unravelled. By applying recent advances in statistics to this biological question, we were able to predict that some of the transcription factors were acting in opposition to each other like a switch, rather than working together, which the study was then able to prove experimentally."

The knowledge gained in the study could aid further research towards the creation of blood stem cells for use in transfusions or blood cancer treatments, and could also help in the understanding of metastasis, which is when cancer spread to other organs.

Dr. Christophe Lancrin, a corresponding author on the paper from the European Molecular Biology Laboratory, Rome, said: "We have revealed the gene regulatory network responsible for switching off the vascular cell fate and switching on the blood program to generate . Interestingly, the process of metastasis in cancer also involves changes in cell states and may use a similar process to the one we have discovered. If we could better understand how the factors responsible for different cell states compete with each other we could begin to think of ways to specifically inhibit this process and improve the chance of survival of cancer patients."

Explore further: How blood vessels are formed

More information: Isabelle Bergiers et al, Single-cell transcriptomics reveals a new dynamical function of transcription factors during embryonic hematopoiesis, eLife (2018). DOI: 10.7554/eLife.29312

Related Stories

How blood vessels are formed

September 15, 2017
Researchers at Heidelberg University have discovered a crucial biological step that regulates the formation of blood vessels. They were able to show that the proteins YAP and TAZ play an important role in this process. The ...

Epigenetic program leading to vessel differentiation

May 19, 2017
Clarification of how human blood vessels are constructed is desperately needed to advance regenerative medicine. A collaborative research group from Kumamoto University, Kyoto University, and the University of Tokyo in Japan ...

Modular gene enhancer promotes leukemia and regulates effectiveness of chemotherapy

January 18, 2018
Every day, billions of new blood cells are generated in the bone marrow. The gene Myc is known to play an important role in this process, and is also known to play a role in cancer. Scientists from the German Cancer Research ...

Approaching a decades-old goal: Making blood stem cells from patients' own cells

May 17, 2017
Researchers at Boston Children's Hospital have, for the first time, generated blood-forming stem cells in the lab using pluripotent stem cells, which can make virtually every cell type in the body. The advance, published ...

Recommended for you

Bioprinting bone substitute materials with cell-laden bioinks

August 21, 2018
Bone tissue engineering (BTE) is a developing field in materials science and bioengineering, in which researchers aim to engineer an ideal, bioinspired material to promote assisted bone repair. Since experimental strategies ...

High-speed atomic force microscopy reveals clock protein interactions

August 21, 2018
For the first time, researchers have seen how proteins involved in the daily biological clock interact with each other, helping them to further understand a process tied to numerous metabolic and eating disorders, problems ...

Could vitamin B3 treat acute kidney injury?

August 20, 2018
Acute kidney injury, an often fatal condition without a specific treatment, affects up to 10 percent of all hospitalized adults in the United States and 30-40 percent in low-income countries. The condition causes a build-up ...

New assay to detect genetic abnormalities in sarcomas outperforms conventional techniques

August 20, 2018
Sarcomas are rare tumors that are often misdiagnosed. Specific recurrent chromosomal rearrangements, known as translocations, can serve as essential diagnostic markers and are found in about 20 percent of sarcomas. Identification ...

Team develops new way to grow blood vessels

August 17, 2018
Formation of new blood vessels, a process also known as angiogenesis, is one of the major clinical challenges in wound healing and tissue implants. To address this issue, researchers from Texas A&M University have developed ...

New imaging technique can spot tuberculosis infection in an hour

August 16, 2018
Guided by glowing bacteria, researchers have devised an imaging technique that can diagnose live tuberculosis in an hour and help monitor the efficacy of treatments. That's particularly critical because many TB strains have ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.