Prostate cancer diagnosis—how scientists are working to get it right

May 10, 2018, Cancer Research UK
Prostate cancer diagnosis—how scientists are working to get it right
Credit: Cancer Research UK

Almost 48,000 men are diagnosed with prostate cancer in the UK every year. But questions are being asked of the tests used to diagnose these men, and how they might be improved.

The tests used today can be painful, invasive and, unfortunately, not that good at telling doctors for sure which cases need urgent attention, or which can be watched over time. This challenge is most apparent when looking at the results of screening studies in men without cancer symptoms using the PSA blood test.

But it's an issue than runs right through the process of diagnosing prostate cancer. And one that needs fixing.

"With prostate cancer, we've got the problem that some aggressive cancers are being missed, while lots of harmless cancers are being treated unnecessarily," says Professor Malcom Mason, a Cancer Research UK prostate cancer expert.

There's clearly room for improvement, but what would a good system look like?

"It's not about picking up everything," says Professor Mark Emberton, a prostate cancer specialist from University College London. "It's about picking up the right cancers – the one's that will cause harm and need treating. And avoiding the cancers that won't."

That's what researchers are working towards. And they're starting by improving existing tests that look for prostate cancer.

Specialist MRI – getting up close and personal with prostate cancer

An important step has been getting eyes on the tumour. "For a long time, we diagnosed and treated prostate cancer without ever properly seeing it," explains Emberton. "This all changed with MRI."

This is not just any old MRI. The big interest has been in a special type of imaging called multiparametric (or mp) MRI. It combines three or four different scans, which can help radiologists build a clearer picture of what's going on in the prostate.

And results suggest it can steer diagnosis in the right direction – by ruling out the need for, or helping guide, follow-up biopsies.

In two studies that involved over 1000 men, scientists found that mpMRI can prevent unnecessary prostate biopsies. The latest results showed that 1 in 4 men with an abnormal PSA test or rectal exam didn't need a biopsy, as the scan showed no abnormalities.

And for men who did need a biopsy, the scan results helped guide doctors taking these tissue samples. This made it less invasive and more likely to pick up abnormal cells than a standard biopsy.

Specialist MRI scans aren't a standard part of prostate cancer diagnosis yet. They're being reviewed by the National Institute for Health and Care Excellent (NICE), which will decide whether or not to recommend the scans as part of standard NHS prostate cancer diagnosis.

And as with any new technique, there's work to be done to ensure that the way the scans are run and analysed is consistent across the UK. Prostate Cancer UK is working with NHS England and hospitals to address issues around access to MRI scanners and specialist training. And we're campaigning so there are enough NHS staff in place to diagnose cancer, including the radiologists who interpret scans.

Putting Gleason grade 'to the test'

Specialist MRI to guide biopsies looks like a big step forward. But what if it could replace biopsies altogether? That's what Emberton and his team are aiming to find out, in a new study funded by the Medical Research Council and Cancer Research UK.

They will combine mpMRI with potential new diagnostic tests – such as looking at DNA shed by cancer cells into the blood – to see if they can predict better than the current system: Gleason grade.

"Gleason grade has been the mainstay in prostate cancer diagnosis for many decades," says Emberton. "But the time may have come to challenge it by combining imaging with an understanding of the genetic basis of prostate cancer."

To do this, they'll recruit 1000 men with abnormal results following a specialised prostate MRI scan. As part of the study, the men will have an MRI-guided biopsy, as well as blood and urine analysis. The team will then monitor the men using electronic NHS records until they die.

"We'll be able to track what treatment men are having, how successful it is and what happens to their cancer over time," says Emberton. "And link that back to the information we got during diagnosis."

At the end of the study, they hope to have a new set of tests that not only diagnose prostate cancer, but also help to guide treatment. This would mean that in the future, men could be diagnosed without the need for an invasive biopsy.

It's an ambitious study, and it will be a while before we have results. But, according to Professor Mason, the length of the study is what sets it apart.

"Most studies stop when they get a diagnosis of 'clinically significant prostate cancer', but the issue is we don't know what that actually means. The fact that this project will follow people up and look at survival is a huge strength," he says.

"We'll have to wait a while to get answers, but it will be worth the investment."

What else is happening?

MRI isn't the only focus for prostate cancer diagnosis, scientists are also testing an ultrasound process called shear wave elastography. This sci-fi sounding technique measures how elastic tissue is. And as tumours are stiffer (or less elastic) than normal prostate tissue, it could provide a way to get information on prostate cancer.

Scientists have tested the technique in 200 men who were about to have surgery for prostate cancer. They found that the test could detect prostate tumours, and the results broadly matched Gleason scores. They'll now need to put shear wave elastography to the test in men who haven't already been diagnosed.

As well as improving diagnosis, scientists are also working to identify men who might be at a higher risk of developing prostate cancer. And then work out what to do with this information. Research shows that black men and men with faults in genes called BRCA are more likely to develop prostate cancer. But Mason thinks there's more to learn.

"We have some clues as to who might be more likely to develop prostate cancer, but we need to refine it more. We should look for more detailed genetic signatures and markers that could help us detect risk."

For Professor Rosalind Eeles, based at The Institute of Cancer Research, London, that means focusing on faulty genes. Eeles has spearheaded an international collaboration to give researchers around the world access to genetic samples from men with prostate cancer. It could help scientists identify faulty genes more quickly, which doesn't just help predict who might be at risk, it could also open the door to new treatments.

Beyond diagnosis

Getting diagnosis right is a major hurdle in boosting prostate cancer survival. But without effective treatments, it would all be for nothing.

Thankfully, progress is being made here too.

We're supporting a trial testing combinations of drugs for men with advanced prostate cancer. STAMPEDE, led by Professor Nick James at the University of Birmingham, has been running for 13 years, and has already changed how advanced prostate cancer is treated. It continues to test new drug combinations, with the most recent results showing that adding the targeted drug abiraterone (Zytiga) to standard hormone treatment improves survival by 40%.

And for men with prostate cancer that hasn't spread, incremental improvements in how radiotherapy is given is helping reduce side effects and the number of hospital visits.

Experimental treatments like high intensity focal ultrasound (HIFU) could also make waves for . The ultrasound technique aims to kill cancer cells using high intensity sound waves and initial trial results suggest it may work as well as surgery or radiotherapy. Scientists are measuring the long-term benefits of the treatment.

Scientists are also testing if an experimental laser treatment can help. The futuristic approach, called vascular-targeted photodynamic therapy, was found to be safe in early trials. But more research is needed before we'll know if the treatment can help save lives.

Bringing it home

The goal is clear: to make prostate cancer diagnosis smarter and more reliable.

There isn't a quick fix, but by using new techniques to build a clearer picture of how prostate cancer progresses, that's what scientists are aiming for. And if they can predict how prostate behaves, it might make treatment more personal too.

"We're working towards a system that would allow us to predict how will progress and pick the right treatment for each person," says Emberton.

Explore further: Researchers to investigate screening for prostate cancer using MRI—potentially replacing the PSA test

Related Stories

Researchers to investigate screening for prostate cancer using MRI—potentially replacing the PSA test

April 4, 2018
A new clinical study will test for the first time if MRI scans can be used for population screening to detect prostate cancer more accurately. The current prostate-specific antigen (PSA) test is considered too unreliable ...

One-off PSA screening for prostate cancer does not save lives

March 6, 2018
Inviting men with no symptoms to a one-off PSA test for prostate cancer does not save lives according to results from the largest ever prostate cancer trial conducted over 10 years by Cancer Research UK-funded scientists ...

Prostate cancer tied to higher colorectal cancer risk

March 1, 2016
(HealthDay)—The risk of colorectal cancer is increased after a diagnosis of prostate cancer, according to a study published online Feb. 25 in Cancer.

New prostate cancer risk score could help guide screening decisions

January 10, 2018
A new score for predicting a man's genetic risk of developing aggressive prostate cancer could help guide decisions about who to screen and when, say researchers in The BMJ today.

One in four men with suspected prostate cancer could avoid unnecessary biopsy if given an MRI scan first

January 20, 2017
Giving men with suspected prostate cancer an MRI scan could improve diagnosis and save those who do not have aggressive cancers from having an unnecessary biopsy, according to a study published in The Lancet.

Body size and prostate cancer risk

July 14, 2017
Prostate cancer is the most common cancer in men in Europe and the second most frequently diagnosed cancer in men worldwide.

Recommended for you

Researchers identify a mechanism that fuels cancer cells' growth

November 14, 2018
Scientists at the UCLA Jonsson Comprehensive Cancer Center have identified sodium glucose transporter 2, or SGLT2, as a mechanism that lung cancer cells can utilize to obtain glucose, which is key to their survival and promotes ...

A new approach to detecting cancer earlier from blood tests: study

November 14, 2018
Cancer scientists led by principal investigator Dr. Daniel De Carvalho at Princess Margaret Cancer Centre have combined "liquid biopsy", epigenetic alterations and machine learning to develop a blood test to detect and classify ...

New antibody breakthrough to lead the fight against cancer

November 14, 2018
Scientists at the University of Southampton have developed a new antibody that could hold the key to unlocking cancer's defence against the body's immune system.

Photoacoustic imaging may help doctors detect ovarian tumors earlier

November 14, 2018
Ovarian cancer claims the lives of more than 14,000 in the U.S. each year, ranking fifth among cancer deaths in women. A multidisciplinary team at Washington University in St. Louis has found an innovative way to use sound ...

Solving the mystery of NPM1 in acute myeloid leukemia

November 13, 2018
Although it has long been recognized that mutations of gene NPM1 play an important role in acute myeloid leukemia, no one has determined how the normal and the mutated forms of the protein NPM1 function.

Cognitive decline—radiation—brain tumor prevented by temporarily shutting down immune response

November 13, 2018
Treating brain tumors comes at a steep cost, especially for children. More than half of patients who endure radiation therapy for these tumors experience irreversible cognitive decline, a side-effect that has particularly ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.