Discovery unlocks secrets behind cancer drug resistance

June 29, 2018 by Liane Topham-Kindley, University of Otago
Melanoma in skin biopsy with H&E stain — this case may represent superficial spreading melanoma. Credit: Wikipedia/CC BY-SA 3.0

University of Otago research provides insights into an underlying mechanism that could explain why new cancer therapies to help treat metastatic melanoma do not always work on patients, paving the way for predicting which patients will benefit from certain drugs.

Senior Research Fellow in the Department of Pathology, Dr. Aniruddha Chatterjee, who has already gained national recognition as one of the country's top emerging scientists, jointly led the work published today in a leading international journal from the Cell Press, iScience, together with colleagues Professor Mike Eccles from the Department of Pathology and Professor Peter Hersey from the University of Sydney.

Their findings shed much needed light on why new immune checkpoint inhibitor therapies such as nivolumab and pembrolizumab – approved by the New Zealand Government for the first time in 2016 to treat – do not work on many patients.

The new immunotherapeutic drugs herald a significant advancement in a cure for cancer. But while they can be effective for some melanoma patients, for others the therapies do not work at all, and most eventually become resistant to immunotherapy treatments.

One of the key components of the immune checkpoint mechanism is a protein on the surface of cancer cells called PD-L1 which can potentially be receptive to or block immunotherapy.

The Otago researchers were able to show that an epigenetic modification – DNA modifications that do not directly alter the DNA sequence, but instead change the frequency by which a cell uses specific genes – specifically DNA methylation, influences whether PD-L1 is expressed on the cancer cell surface.

Dr. Chatterjee, who last year was awarded a Rutherford Discovery Fellowship to study the epigenetics of metastasis, says melanoma is a global problem, but particularly relevant in New Zealand where we have the highest incidence rates of the disease.

Oncologist Chris Jackson, who is a researcher for the University of Otago's Centre for Translational Cancer Research but not involved in this project, explains "biomarkers" are tools to select which patients benefit from which cancer therapies.

"Currently, there are no reliable biomarkers for predicting benefit from immune therapy in melanoma and these are desperately needed in the clinic," Dr. Jackson says.

"Biomarkers would help choose which patients are likely to benefit and who are not. Many groups worldwide are searching for immune-therapy biomarkers and this Otago discovery of an epigenetic marker appears very promising."

However, the findings will now need to be tested in people with melanoma undergoing treatment to see if this test can make it "from the bench to the bedside", Dr. Jackson says.

Dr. Chatterjee says the findings suggest epigenetic therapies could be used in clinical trials in combination with immunotherapy in melanoma to treat patients. However, further trials would be needed before this could become a possibility.

The Health Research Council has just this month awarded $1,198,714 to the researchers to continue their work on patients in New Zealand over the next three years. Professor Eccles says they plan to develop a DNA methylation marker panel that predicts the likelihood of melanoma patients responding to immunotherapy treatment.

"This work will contribute to selecting the best treatment option for , and also for developing new targets for epigenetic therapies."

There is currently no robust biomarker able to predict patient response and also relatively little understanding of the basis for resistance to immunotherapy treatment of melanoma. There is a global effort to unlock the secrets behind resistance to immunotherapy and the Otago researchers believe they may have uncovered a key piece of the puzzle.

DNA methylation is an epigenetic mechanism that plays a key role in switching genes "on" or "off" and helps to determine cellular function. Generally, DNA methylation silences gene expression and has been implicated in cancer.

"Our research provides evidence that it is the global loss of DNA methylation that regulates constitutive expression of the immune checkpoint PD-L1 in melanoma," Dr. Chatterjee explains.

The findings have been heralded by the researchers' peers internationally as "highly novel" and a major advance in understanding biology.

Explore further: Epigenetic changes promoting cancer metastasis identified

Related Stories

Epigenetic changes promoting cancer metastasis identified

December 21, 2016
Latest University of Otago research is shedding new light on why and how cancer cells spread from primary tumours to other parts of the body. This phenomenon – known as metastasis – causes about 90 per cent of all cancer ...

Older melanoma patients have better response to immune checkpoint blockade therapy

June 13, 2018
Patient age correlates with response to immunotherapy in melanoma and depleting regulatory T cells in young patients may have a therapeutic potential to enhance response in younger patients, according to research from The ...

In melanoma, radiosurgery may combine well with immunotherapy, especially PD-1 inhibitors

June 25, 2018
Doctors often treat melanoma with drugs that unblind the immune system to cancer. And brain metastases associated with melanoma are often treated with precisely targeted radiation known as radiosurgery. Now a University of ...

Drug combination overcomes barrier to effective melanoma immunotherapy

April 12, 2018
Immunotherapies are treatments that stimulate a patient's immune cells to attack tumors. They can be very effective in melanoma—a common and aggressive form of skin tumor—but nonetheless fail in the majority of patients. ...

Who might benefit from immunotherapy? New study suggests possible marker

January 16, 2018
While immunotherapy has made a big impact on cancer treatment, the fact remains that only about a quarter of patients respond to these treatments.

Obesity linked to improved survival in male melanoma patients

March 26, 2018
Obese patients with metastatic melanoma live significantly longer than those with normal body mass indexes (BMI), according to a new study published in Lancet Oncology. The surprising association was mainly seen in male patients ...

Recommended for you

New drug seeks receptors in sarcoma cells, attacks tumors in animal trials

December 13, 2018
A new compound that targets a receptor within sarcoma cancer cells shrank tumors and hampered their ability to spread in mice and pigs, a study from researchers at the University of Illinois reports.

Surgery unnecessary for many prostate cancer patients

December 13, 2018
Otherwise healthy men with advanced prostate cancer may benefit greatly from surgery, but many with this diagnosis have no need for it. These conclusions were reached by researchers after following a large group of Scandinavian ...

Combining three treatment strategies may significantly improve melanoma treatment

December 12, 2018
A study by a team led by a Massachusetts General Hospital (MGH) investigator finds evidence that combining three advanced treatment strategies for malignant melanoma—molecular targeted therapy, immune checkpoint blockade ...

Lethal combination: Drug cocktail turns off the juice to cancer cells

December 12, 2018
A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth—this was discovered by researchers from the University of Basel's Biozentrum two years ago. In a follow-up study, ...

Researchers use computer model to predict prostate cancer progression

December 12, 2018
An international team of cancer researchers from Denmark and Germany have used cancer patient data to develop a computer model that can predict the progression of prostate cancer. The model is currently being implemented ...

An integrated approach to finding new treatments for breast cancer

December 12, 2018
Unraveling the complexity of cancer biology can lead to the identification new molecules involved in breast cancer and prompt new avenues for drug development. And proteogenomics, an integrated, multipronged approach, seems ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.