First photoactive drug to fight Parkinson's disease

June 8, 2018, University of Barcelona
First photoactive drug to fight Parkinson’s disease
Credit: Universidad de Barcelona

An international team has designed the first potentially therapeutic photoactive drug, MRS7145, to fight Parkinson's disease, according to the new article in Journal of Controlled Release.

This compound, which proved effective in laboratory animals in vivo, has been carried out by a team led by Francisco Ciruela, from the Faculty of Medicine and Health Sciences of the University of Barcelona, and collaborators.

Optopharmacology: beyond the limits of conventional drugs

Parkinson's is the second most common neurodegenerative disease after Alzheimer's and it affects more than 1 percent of the population. This disease, which affects the central nervous system, affects more than six million people worldwide, figures that could go higher than twelve million by 2030, according to data from the World Health Organization (WHO). In this disease, the neurotransmitter that controls the motor activity, dopamine, is reduced due the progressive death of dopaminergic neurons.

The action of is sometimes limited due several factors –lack of spatial specificity, slow and inaccurate distribution, etc.- which can reduce its therapeutic efficiency. Also, the efficiency of the traditional treatment on Parkinson's (levodopa) diminishes over time and it requires to increase the administration of the dose or to change the drug. The of new drugs (uncontrolled movements in the body, motor fluctuations, etc.) are another common denominator in most patients.

Optopharmacology is an innovative discipline based on the use of light –with a certain wave length- to control the activity of drugs. Therefore, light-sensitive drugs can act with a higher spatial and time precision and without creating adverse effects in the body.

MRS7145: opening the way to treat neurodegenerative diseases

The MRS7145, the first potentially therapeutic photoactive drug to fight Parkinson's, is a photo-sensitive derivate from SCH442416, a selective antagonist of adenosine A2A receptor. In scientific bibliography, some A2A antagonist receptors came up as potential drugs to fight Parkinson's, since they take part in the involved mechanisms in controlling the movement.

This photoactive drug is an inactive chemical compound that gets activated with light from a visible spectrum (with a 405 nm wave length) which is not harmful for the body. A series of optical fibers –planted in the striated bodies of laboratory animals- provide the irradiation of this area in the brain, which is responsible for the control of motor activity.

Lecturer Francisco Ciruela says, "once the striated body is radiated with violet light the active drug is released and blocks the adenosine A2A receptor. The blocking of adenosine receptors has an administrating effect on the activity of dopamine (pro-dopaminergic action)."

Photo-sensitive molecules that improve patients' quality of life

Improving the spatial and temporary precision of the drug and strengthening the commitment of the patient to the therapy are some of the benefits of optopharmacology in Parkinson's. "A fine time-space precision will enable manipulating the neural circuits in detail and set the functioning of those with therapeutic and neuroprotective purposes," says Ciruela.

"Nowadays, in addition, there are treatments that are based on the implementation of electrodes in the brain of patients with Parkinson's to control the electric activity of neurons. In the same lines, optical fibers could make light getting to almost any part of the body (spatial resolution), and these organs would be radiated with light controlled by an electronic device that would regulate the intensity and length of radiation (time resolution).

Maintaining the commitment of patients to the set therapeutic guideline on the long run is a big challenge for chronic diseases. "With a slow release system from the photoactive drug, such as a coupled patch with a radiation system remotely controlled by a phone App, the doctor could control in a precise manner the release of the most efficient dose of the active drug in the place of action," says Ciruela.

Although the clinical application of this photoactive in patients is still far, this pharmacological innovation could lead the way to a research on new therapeutical solutions for this chronic disease. The new article, published in Journal of Controlled Release, is therefore a step forward in the field of pharmacology to design new therapeutical strategies with photo-sensitive molecules and to set innovative clinical protocols to improve patients' quality of life.

Explore further: First photoactive drug for pain treatment

More information: Jaume Taura et al. Remote control of movement disorders using a photoactive adenosine A 2A receptor antagonist, Journal of Controlled Release (2018). DOI: 10.1016/j.jconrel.2018.05.033

Related Stories

First photoactive drug for pain treatment

April 12, 2017
A team of the Institute of Neurosciences of the University of Barcelona has participated in the design of the first light-activated drug, JF-NP-26, for the treatment of pain, according to a study with animal models published ...

Investigators eye new target for treating movement disorders

January 19, 2018
Blocking a nerve-cell receptor in part of the brain that coordinates movement could improve the treatment of Parkinson's disease, dyskinesia and other movement disorders, researchers at Vanderbilt University have reported.

Tactic for controlling motor symptoms of advanced Parkinson's disease

January 25, 2018
Standard drug treatment for Parkinson's disease can over time induce motor complications that reduce the effectiveness of restoring mobility. These complications include abnormal involuntary movements known as dyskinesias. ...

New drug may treat and limit progression of Parkinson's disease

July 31, 2017
Researchers at Binghamton University have developed a new drug that may limit the progression of Parkinson's disease while providing better symptom relief to potentially hundreds of thousands of people with the disease.

Body movements just need a 'puff' of dopamine to get started

January 31, 2018
From morning til night, we never stop executing movements at the right time and speed. But patients suffering from Parkinson's disease lose this natural control over their voluntary movements.

Recommended for you

New transgenic model of Parkinson's illuminates disease biology

October 11, 2018
Parkinson's disease (PD) is a neurodegenerative disorder that presents clinically with abnormal movement and tremors at rest. In the brain, PD is marked by the accumulation of the protein, α-synuclein (αS), into clumps ...

Early Parkinson's patients waiting too long to seek medical evaluation

September 27, 2018
The time between diagnosis and the institution of symptomatic treatment is critical in the effort to find a cure for Parkinson's Disease (PD). A paper published in Nature Partner Journal: Parkinson's Disease notes too many ...

Molecule capable of halting and reverting neurodegeneration caused by Parkinson's disease identified

September 25, 2018
The small SynuClean-D molecule interrupts the formation of the alpha-synuclein amyloid fibres responsible for the onset of Parkinson's disease, and reverts the neurodegeneration caused by the disease. The study, headed by ...

Genomic dark matter activity connects Parkinson's and psychiatric diseases

September 20, 2018
Dopamine neurons are located in the midbrain, but their tendril-like axons can branch far into the higher cortical areas, influencing how we move and how we feel. New genetic evidence has revealed that these specialized cells ...

Gene therapy shown to remove core component of Parkinson's disease

September 14, 2018
An international team led by Rush researcher Jeffrey Kordower, Ph.D., has moved a step closer to developing a treatment to clear brain cells of a protein that is an integral cause of Parkinson's disease. The team published ...

ADHD may increase risk of Parkinson's disease and similar disorders

September 12, 2018
While about 11 percent of children (4-17 years old) nationwide have been diagnosed with attention-deficit hyperactivity disorder (ADHD), the long-term health effects of having ADHD and of common ADHD medications remains understudied. ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.