Tactic for controlling motor symptoms of advanced Parkinson's disease

January 25, 2018, Emory University
Immunohistochemistry for alpha-synuclein showing positive staining (brown) of an intraneural Lewy-body in the Substantia nigra in Parkinson's disease. Credit: Wikipedia

Standard drug treatment for Parkinson's disease can over time induce motor complications that reduce the effectiveness of restoring mobility. These complications include abnormal involuntary movements known as dyskinesias. In a nonhuman primate model of Parkinson's, scientists at Yerkes National Primate Research Center, Emory University, have been probing the origin of these abnormal responses to treatment, particularly dyskinesias, and have successfully tested a tactic for controlling them.

The results, which will be important for developing new treatment options, are published in Cell Reports.

Neuroscientists think dyskinesias come from fluctuations in dopamine, the neuronal messenger whose production is lost in the brains of people who have Parkinson's disease. The standard levodopa restores dopamine, but sometimes, in the process of achieving symptom relief, dopamine levels become too high, and responses are unstable.

Researchers led by Stella Papa, MD, showed striatal projection neurons (SPN), which become hyperactive when nearby dopamine-producing neurons degenerate, could be controlled by certain drugs, reducing the rate of unstable responses to dopamine that cause dyskinesias. The striatum is part of the basal ganglia, the region of the brain most visibly impacted by Parkinson's.

"Our focus was to prove SPN hyperactivity plays an important role and that glutamate signals are a major contributor," says Papa, associate professor of neurology at Emory University School of Medicine and a Yerkes researcher. "Knowing this mechanism may serve to develop different therapeutic strategies: pharmacological treatments or gene therapies."

The first author of the paper is former Yerkes researcher Arun Singh, PhD, now at University of Iowa. Laboratories in Emory's Department of Pharmacology made significant contributions to this work, especially the group Stephen Traynelis, PhD, leads; Dr. Traynelis had a key role in the study. Annalisa Scimemi at SUNY Albany also contributed to the study.

The researchers tested whether the drug LY235959 (an NMDA receptor antagonist) or NBQX (an AMPA receptor antagonist) could control SPN hyperactivity and symptoms in Parkinson's model monkeys. The nonhuman primate model of Parkinson's uses the neurotoxin MPTP, which destroys .

Both drugs interfere with signals by the neurotransmitter glutamate. In the presence of levodopa, the drugs had calming effects both in single cell SPN recordings and when the drugs were infused into monkeys' . After lowering the SPN firing frequency by 50 percent, the response to dopamine stabilizes and abnormal movements are markedly diminished, Papa says.

She notes the particular drugs used are not ideal for use in humans, but they do reveal mechanisms behind dyskinesias, insights that will be valuable to advance the research and develop new treatments with improved effectiveness for people who have Parkinson's disease.

Explore further: Investigators eye new target for treating movement disorders

Related Stories

Investigators eye new target for treating movement disorders

January 19, 2018
Blocking a nerve-cell receptor in part of the brain that coordinates movement could improve the treatment of Parkinson's disease, dyskinesia and other movement disorders, researchers at Vanderbilt University have reported.

Human brain recordings provide highly sought insights into cause of Parkinson's disease

August 9, 2016
Researchers at Yerkes National Primate Research Center, Emory University, are the first to systematically record neural activity in the human striatum, a deep brain structure that plays a major role in cognitive and motor ...

Researchers overturn the theory of Parkinson's disease

September 26, 2017
A KAIST research team has identified a new mechanism that causes the hallmark symptoms of Parkinson's disease, namely tremors, rigidity, and loss of voluntary movement.

Conversion of brain cells offers hope for Parkinson's patients

April 11, 2017
Researchers at Karolinska Institutet have made significant progress in the search for new treatments for Parkinson's disease. By manipulating the gene expression of non-neuronal cells in the brain, they were able to produce ...

Major complication of Parkinson's therapy explained

September 10, 2015
Researchers have discovered why long-term use of L-DOPA (levodopa), the most effective treatment for Parkinson's disease, commonly leads to a movement problem called dyskinesia, a side effect that can be as debilitating as ...

New technique can provide better cell transplants against Parkinson's disease

May 5, 2016
Researchers at Lund University in Sweden have used a completely new preclinical technique and analysis of tissue from patients to show exactly what happens when certain patients with Parkinson's disease are restored as a ...

Recommended for you

Protein levels in spinal fluid correlate to posture and gait difficulty in Parkinson's

February 21, 2018
Levels of a protein found in the brain called alpha-synuclein (α-syn) are significantly lower than normal in cerebrospinal fluid collected in Parkinson's disease patients suffering from postural instability and gait difficulty, ...

Calcium may play a role in the development of Parkinson's disease

February 19, 2018
Researchers have found that excess levels of calcium in brain cells may lead to the formation of toxic clusters that are the hallmark of Parkinson's disease.

New method maps the dopamine system in Parkinson's patients

February 14, 2018
With the aid of a PET camera, researchers from Karolinska Institutet in Sweden have developed a new method for investigating the dopamine system in the brains of patients suffering from Parkinson's disease. The method measures ...

Mechanism behind common Parkinson's mutation discovered

February 5, 2018
Northwestern Medicine investigators have discovered how a gene mutation results in buildup of a toxic compound known to cause Parkinson's disease symptoms, defining for the first time the mechanism underlying that aspect ...

Tactic for controlling motor symptoms of advanced Parkinson's disease

January 25, 2018
Standard drug treatment for Parkinson's disease can over time induce motor complications that reduce the effectiveness of restoring mobility. These complications include abnormal involuntary movements known as dyskinesias. ...

A new therapeutic avenue for Parkinson's disease

January 23, 2018
Systemic clearing of senescent astrocytes prevents Parkinson's neuropathology and associated symptoms in a mouse model of sporadic disease, the type implicated in 95% of human cases. Publishing in Cell Reports, researchers ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.