Research reveals new insights into hepatitis B

June 1, 2018 by Ann Manser, University of Delaware
UD researchers, Jodi Hadden and Juan Perilla, have used computer simulations to learn more about the capsid, or protein shell, that encloses the genetic blueprint of the hepatitis B virus. An image of the capsid shows how it is made up of 240 proteins. Credit: University of Delaware

Researchers at the University of Delaware, working with colleagues at Indiana University, have gained new insights into the virus that causes hepatitis B—a life-threatening and incurable infection that afflicts more than 250 million people worldwide.

The discovery, which was published April 27 in the journal eLife, reveals previously unknown details about the capsid, or protein shell, that encloses the virus' genetic blueprint.

Scientists believe that the capsid, which drives the delivery of that blueprint to infect a host cell, is a key target in developing drugs to treat hepatitis B.

"With hepatitis B, the structure of the capsid has been known for years, but we wanted to study its motion and its influence on its surroundings," said Jodi A. Hadden, an independent postdoctoral researcher in UD's Department of Chemistry and Biochemistry and the lead author of the new paper.

Hadden and the research team used supercomputing resources to perform what are known as all-atom .

Molecular dynamics simulations allow researchers to study the way molecules move in order to learn how they carry out their functions in nature. Computer simulations are the only method that can reveal the motion of molecular systems down to the atomic level and are sometimes referred to as the "computational microscope."

In the case of the simulations of the hepatitis B virus, the researchers found that the capsid is not rigid as previously thought, but is highly flexible. They also learned that it can distort into an asymmetric shape, which might allow it to squeeze through an opening into the nucleus of a cell the virus is infecting.

"We think that the capsid might need that ability to distort in order to correctly package its and get it into the nucleus to generate new copies of the virus during the infection process," Hadden said.

Previous research has used experimental microscopes to study the capsid, which is made up of 240 proteins, but that work hasn't yielded high-resolution images of the complex structure, said Juan R. Perilla, assistant professor of chemistry and biochemistry and a co-author of the new paper.

Credit: University of Delaware

"It seems clear that the flexibility of the [hepatitis B] capsid is a limiting factor" in the effectiveness of microscopy, he said.

By contrast, the simulations have been able to reveal a more complete picture of the capsid and how it moves, distorts and interacts with its environment, Hadden said. Each simulation involves six million atoms.

"We have all the details down to the ," she said. "You need that to develop a complete understanding of the molecule and to study drug interactions."

The researchers also found that small triangular openings, or pores, in the capsid surface are likely the location where its protein "tails" poke through, sending a signal that is essential to the infection process.

"We know that the capsid tails have to be exposed to the surface at some time for the capsid to travel to the cell nucleus," Hadden said. "It's like hailing a taxi."

All the findings have the potential to lead to drug treatments, she said. For example, if the capsid could be made rigid and unable to distort or if a way could be found to block the triangular pores in its surface, the infection process might be halted.

There's an effective vaccine to prevent hepatitis B, but no cure once a person is infected. The virus causes severe liver disease, which can lead to potentially fatal conditions such as cirrhosis and liver cancer.

More about the research

The paper is available online at eLife, a peer-reviewed, open-access scientific journal for the biomedical and life sciences.

Co-authors, with Hadden and Perilla, are Christopher John Schlicksup, Balasubramanian Venkatakrishnan and Adam Zlotnick, all of Indiana University, and the late Klaus Schulten of the University of Illinois at Urbana-Champaign (UIUC), who pioneered the application of all-atom to study complete virus capsids.

Explore further: 'Virus-cracking' molecules advance fight against hepatitis B

More information: Jodi A Hadden et al. All-atom molecular dynamics of the HBV capsid reveals insights into biological function and cryo-EM resolution limits, eLife (2018). DOI: 10.7554/eLife.32478

Related Stories

'Virus-cracking' molecules advance fight against hepatitis B

February 6, 2018
Indiana University researchers have made an important step forward in the design of drugs that fight the hepatitis B virus, which can cause liver failure and liver cancer.

Study offers clearest picture yet of how HIV defeats a cellular defender

March 4, 2016
A new study offers the first atomic-scale view of an interaction between the HIV capsid - the protein coat that shepherds HIV into the nucleus of human cells - and a host protein known as cyclophilin A. This interaction is ...

Researchers find new rhinovirus infection insights

December 31, 2013
(Medical Xpress)—On average, each of us catches a cold two to three times a year. However, how the common cold virus actually infects us is only partly understood. Researchers from the Max F. Perutz Laboratories of the ...

Wit, grit and a supercomputer yield chemical structure of HIV capsid

May 29, 2013
Researchers report that they have determined the precise chemical structure of the HIV capsid, a protein shell that protects the virus's genetic material and is a key to its virulence. The capsid has become an attractive ...

Recommended for you

Tibetan sheep highly susceptible to human plague, originates from marmots

August 16, 2018
In the Qinghai-Tibet plateau, one of the region's highest risk areas for human plague, Himalayan marmots are the primary carriers of the infectious bacterium Y. pestis. Y. pestis infection can be transmitted to humans and ...

Autoimmunity plays role in development of COPD, study finds

August 16, 2018
Autoimmunity plays a role in the development of chronic obstructive pulmonary disease (COPD), according to a study led by Georgia State University and Vanderbilt University Medical Center that analyzed human genome information ...

Reliable point-of-care blood test can help prevent toxoplasmosis

August 16, 2018
A recent study, performed in Chicago and Rabat, Morocco, found that a novel finger-prick test for infection with the parasite Toxoplasma gondii during pregnancy—and many other potential applications—is 100 percent sensitive ...

Scientists identify nearly 200 potential tuberculosis drug targets

August 16, 2018
Tuberculosis is one of the top 10 causes of death worldwide. Nearly 2 million people die every year from this infectious disease, and an estimated 2 billion people are chronically infected. The only vaccine, developed almost ...

First mouse model to mimic lung disease could speed discovery of more effective treatments

August 16, 2018
The biggest hurdle to finding effective therapies for idiopathic pulmonary fibrosis (IPF) – a life-threatening condition in which the lungs become scarred and breathing is increasingly difficult – has been the inability ...

Anticancer drug offers potential alternative to transplant for patients with liver failure

August 15, 2018
Patients suffering sudden liver failure could in the future benefit from a new treatment that could reduce the need for transplants, research published today shows.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.