Researchers create new programmed shape-morphing scaffolds enabling facile 3-D endothelialization

June 1, 2018, Chinese Academy of Sciences
Researchers create new programmed shape-morphing scaffolds enabling facile 3-D endothelialization
Physical characteristics of shape-morphing scaffolds, and the shape-morphing scaffolds with seeded human umbilical vein endothelial cells (HUVECs). Credit: DU Xuemin

Recently, a research team led by Dr. DU Xuemin at the Shenzhen Institutes of Advanced Technology (SIAT) of the Chinese Academy of Sciences created a new shape-morphing scaffold, enabling programmed deformation from a 2-D planar cell-laden structure to a well-defined 3-D tubular shape, which facilitated the facile 3-D endothelialization of small-diameter vascular grafts.

The paper entitled "Programmed Shape-Morphing Scaffolds Enabling Facile 3-D Endothelialization" was published in Advanced Functional Materials.

Cardiovascular disease is now the No. 1 cause of death globally according to the World Health Organization, and more than 17.5 million patients die from it every year.

Coronary artery bypass grafting (CABG) is one of most effective approaches for treating severe cardiovascular disease. However, patients undergoing CABG still face the high risks of transplantation surgery and potential complications caused by compliance mismatch.

In recent years, tissue engineering has emerged, holding the promise of constructing functional vascular analogs for treating . Nevertheless, 3-D endothelialization remains a great challenge for tissue-engineered vascular grafts (TEVGs), particularly small-diameter ones (diameter < 5 mm) suited for CABG, and is the primary problem of TEVGs upon implantation.

To address the problem of 3-D endothelialization of TEVGs, the researchers designed and developed a novel , consisting of two layers that combined a shape memory polymer and an electrospun membrane.

Researchers create new programmed shape-morphing scaffolds enabling facile 3-D endothelialization
2-D organization of HUVECs (green color, stained by Calcein AM) cultured on the bilayer scaffold, and the immunochemical staining of HUVECs incubated on the different types of shape-morphing scaffolds. Credit: DU Xuemin

By employing the unique shape memory property of the polymer, the scaffold could deform from a 2-D planar shape to a well-defined 3-D tubular shape at the physiological temperature (37 °C).

The seeded firmly and homogeneously on the electrospun membrane of the planar bilayer scaffold could therefore be conveniently converted to a vascular-like structure of predetermined tubular shape, and a desirable 3-D spatial organization of endothelial cells onto the lumen of the scaffold was achieved.

The study found that the 3-D cultured endothelial cells on the novel shape-morphing scaffold could form biomimetic cell-scaffold and cell-cell interactions, effectively promoting the formation of a confluent endothelial monolayer and the 3-D endothelialization of TEVGs.

This research not only offers a new method for creating TEVGs that enables facile 3-D endothelialization, but also offers a potential in vitro endothelium model for the screening of cardiovascular drugs.

"We hope that the universal strategy developed in this study by combining smart materials and conventional tissue engineering scaffolds can be extended to engineering complex cell-scaffold constructs mimicking the complicated anatomy of various tissues and organs through on-demand programmed deformation," said Dr. DU Xuemin.

Explore further: Vascular bypass grafting: A biomimetic engineering approach

More information: Qilong Zhao et al, Programmed Shape-Morphing Scaffolds Enabling Facile 3D Endothelialization, Advanced Functional Materials (2018). DOI: 10.1002/adfm.201801027

Related Stories

Vascular bypass grafting: A biomimetic engineering approach

January 23, 2018
When a patient with heart disease is in need of a vascular graft but doesn't have any viable veins or arteries in his or her own body, surgeons can rely on synthetic, tissue-engineering grafts. However, the body often treats ...

Team in China grows ears and attaches them to human patients

February 2, 2018
A team of researchers in China has, for the first time, created new ears for human patients by growing cartilage and implanting it. In their paper published on the open access site EBioMedicine, the group outlines how the ...

Recommended for you

Everything big data claims to know about you could be wrong

June 19, 2018
When it comes to understanding what makes people tick—and get sick—medical science has long assumed that the bigger the sample of human subjects, the better. But new research led by UC Berkeley suggests this big-data ...

Are you sticking to your diet? Scientists may be able to tell from a blood sample

June 19, 2018
An analysis of small molecules called "metabolites" in a blood sample may be used to determine whether a person is following a prescribed diet, scientists at Johns Hopkins Bloomberg School of Public Health have shown.

Diagnosing and treating disorders of early sex development

June 19, 2018
Diagnosing, advising on and treating disorders of early sex development represent a huge medical challenge, both for those affected and for treating physicians. In contrast to the earlier view, DSD (Difference of Sex Development) ...

BPA can induce multigenerational effects on ability to communicate

June 18, 2018
Past studies have shown that biparental care of offspring can be affected negatively when females and males are exposed to bisphenol A (BPA); however, previous studies have not characterized how long-term effects of BPA exposure ...

New compound shown to be as effective as FDA-approved drugs against life-threatening infections

June 15, 2018
Purdue University researchers have identified  a new compound that in preliminary testing has shown itself to be as effective as antibiotics approved by the Food and Drug Administration to treat life-threatening infections ...

Foods combining fats and carbohydrates more rewarding than foods with just fats or carbs

June 14, 2018
Researchers show that the reward center of the brain values foods high in both fat and carbohydrates—i.e., many processed foods—more than foods containing only fat or only carbs. A study of 206 adults, to appear June ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.