Team in China grows ears and attaches them to human patients

February 2, 2018 by Bob Yirka, Medical Xpress report
Post-implantation follow-ups. The pre-operated microtic ear showing a peanut-like structure. At two and a half years post-implantation, the reconstructed ear shows typical auricular features with helix, anti-helix, and cavum conchae, largely symmetrical to the healthy side. Post-implantation assessment at different time points shows the signs of gradual shape recovery, where only blunt ear structures are observed at the 1st and the 6th months post-implantation. Relatively clear ear features with helix, anti-helix, and cavum conchae structures gradually appeared at 9, 12, 24, and 30 months post-implantation. MRI examination reveals an obvious sandwich structure of the ear framework with cartilage (low signal, yellow arrows) surrounding the PCL core region (red arrows). PCL core region signals are difficult to distinguish from other tissue signals at early stage (Post-OP 1 m; a result of tissue edema) and present a gradual decreased trend with increased implantation time (Post-OP 6–24 m). Pre-OP: pre-operation; Post-OP: post-operation. Credit: EBioMedicine (2018). DOI: 10.1016/j.ebiom.2018.01.011

A team of researchers in China has, for the first time, created new ears for human patients by growing cartilage and implanting it. In their paper published on the open access site EBioMedicine, the group outlines how the ears were made, how they were attached and how well the ears are developing in the young patients.

All of the patients in the study were children (above age six, the point where stop growing) with a condition called microtia, in which one ear fails to develop normally or at all. Each volunteered for the study, which involved removing cartilage samples (chondrocytes) from the underdeveloped ear and then waiting three months for new ear cartilage to grow sufficiently for implantation. Cells taken from the cartilage were used to seed a built using a PCL mesh as an inner base, which was then wrapped with PGA fibers and then covered with PLA—all of which are biodegradable. The scaffold was housed inside a mold made using a 3-D model of each child's healthy ear. The mold allowed the cells on the scaffold to grow into the shape of normal ear cartilage.

After three months, the children had excess ear material surgically removed or altered—once fully prepared, the scaffold with its load of cells was implanted into the prepped ear, which was then covered with skin grafts. After that, the cartilage was allowed to mature on its own inside the child's ear over time. The researchers monitored each of the children for months, or even a couple of years, to see how the ears matured and to deal with any problems that arose. They report that for three of the five patients, the ears remained normally shaped—the other two had some slight shape abnormalities.

The researchers report that they will continue to monitor the for at least five more years, looking specifically for abnormal growth that could indicate tumors—implanted cultured have sometimes become cancerous in animal studies. Another concern is that the ears will become malformed over time because the is based on chondrocytes taken from the unhealthy ear.

Explore further: New technique for repairing knee cartilage damage

More information: Guangdong Zhou et al. In Vitro Regeneration of Patient-specific Ear-shaped Cartilage and Its First Clinical Application for Auricular Reconstruction, EBioMedicine (2018). DOI: 10.1016/j.ebiom.2018.01.011

Microtia is a congenital external ear malformation that can seriously influence the psychological and physiological well-being of affected children. The successful regeneration of human ear-shaped cartilage using a tissue engineering approach in a nude mouse represents a promising approach for auricular reconstruction. However, owing to technical issues in cell source, shape control, mechanical strength, biosafety, and long-term stability of the regenerated cartilage, human tissue engineered ear-shaped cartilage is yet to be applied clinically. Using expanded microtia chondrocytes, compound biodegradable scaffold, and in vitro culture technique, we engineered patient-specific ear-shaped cartilage in vitro. Moreover, the cartilage was used for auricle reconstruction of five microtia patients and achieved satisfactory aesthetical outcome with mature cartilage formation during 2.5 years follow-up in the first conducted case. Different surgical procedures were also employed to find the optimal approach for handling tissue engineered grafts. In conclusion, the results represent a significant breakthrough in clinical translation of tissue engineered human ear-shaped cartilage given the established in vitro engineering technique and suitable surgical procedure.

Related Stories

New technique for repairing knee cartilage damage

May 25, 2017
Dear Mayo Clinic: I'm interested in the new procedure approved by the U.S. Food and Drug Administration that can repair cartilage in the knee. How does it work? Who's a good candidate for this procedure?

Using 3-D printing and injectable molds, bioengineered ears look and act like the real thing

February 20, 2013
Cornell bioengineers and physicians have created an artificial ear – using 3-D printing and injectable molds – that looks and acts like a natural ear, giving new hope to thousands of children born with a congenital deformity ...

Knee cartilage product approved to repair defects

December 14, 2016
(HealthDay)—Maci (autologous cultured chondrocytes) has been approved by the U.S. Food and Drug Administration to repair defective cartilage of the knee.

Recommended for you

DNA gets away: Scientists catch the rogue molecule that can trigger autoimmunity

February 22, 2018
A research team has discovered the process - and filmed the actual moment - that can change the body's response to a dying cell. Importantly, what they call the 'Great Escape' moment may one day prove to be the crucial trigger ...

Low-calorie diet enhances intestinal regeneration after injury

February 22, 2018
Dramatic calorie restriction, diets reduced by 40 percent of a normal calorie total, have long been known to extend health span, the duration of disease-free aging, in animal studies, and even to extend life span in most ...

Artificial intelligence quickly and accurately diagnoses eye diseases and pneumonia

February 22, 2018
Using artificial intelligence and machine learning techniques, researchers at Shiley Eye Institute at UC San Diego Health and University of California San Diego School of Medicine, with colleagues in China, Germany and Texas, ...

Gut microbes protect against sepsis—mouse study

February 22, 2018
Sepsis occurs when the body's response to the spread of bacteria or toxins to the bloodstream damages tissues and organs. The fight against sepsis could get a helping hand from a surprising source: gut bacteria. Researchers ...

Fertility breakthrough: New research could extend egg health with age

February 22, 2018
Women have been told for years that if they don't have children before their mid-30s, they may not be able to. But a new study from Princeton University's Coleen Murphy has identified a drug that extends egg viability in ...

Breakthrough could lead to better drugs to tackle diabetes and obesity

February 22, 2018
Breakthrough research at Monash University has shown how different areas of major diabetes and obesity drug targets can be 'activated', guiding future drug development and better treatment of diseases.


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.