Gene regulator may contribute to protein pileup in exfoliation glaucoma

July 19, 2018, Medical College of Georgia at Augusta University
In exfoliation glaucoma, a protein dandruff clogs the outflow pathway for the fluid in our eyes.Scientists have evidence that variants of the same gene that enables us to make connective tissue by crosslinking proteins is associated with this unusual glaucoma. Pictured are Dr. Yutao Liu and graduate student Jingwen Cai (foreground). Credit: Phil Jones, Senior Photographer, Augusta University

In exfoliation glaucoma, a protein dandruff clogs the outflow pathway for the fluid in our eyes.

Scientists have evidence that variants of the same gene that enables us to make connective tissue by crosslinking proteins is associated with this unusual .

Now they are looking in human eye tissue at a long piece of RNA that helps control expression of that LOXL1 gene with the idea that it may be a culprit in the destructive pileup of LOXL1 inside the eye.

A new, $440,000 grant from the National Eye Institute is helping Dr. Yutao Liu and his colleagues further explore the relationship between the gene and this long, noncoding RNA dubbed lncLOXL1.

A long-term goal is finding better treatment targets for this glaucoma, which is generally more aggressive and difficult to treat than its more common counterpart, primary open angle glaucoma, says Liu, vision scientist and human geneticist in the Department of Cellular Biology and Anatomy at the Medical College of Georgia at Augusta University.

"Variants of this gene are associated with the disease in every population we have studied worldwide," Liu says, including Caucasians, blacks in South Africa, the Japanese as well as Southeast Asians in India. They found the expression of LOXL1 consistently elevated early in the disease in every population. Variants are basically a slight difference in the most usual sequence of letters in the DNA.

High levels of LOXL1 protein that clog outflow tracts for the eye's aqueous humor also are a constant in all those patients. Still, there is conflicting laboratory evidence about the role of the suspect gene because neither removing or overexpressing it always results in the classic protein accumulation and high pressure inside the eye, at least in lab animals. So Liu and his team are also now looking at lncLOXL1, which regulates the gene's expression.

So far they have seen the expression level of the gene and lncLOXL1 correlate in both gene variations the scientists have seen in the human populations they have studied. They also have seen that as disease progresses, the goes down even as the protein piles up, typically at about age 60.

One of the many things they want to know now is what happens to the lncLOXL1 expression in disease. Does its expression also go down when disease becomes symptomatic, or does its parallel expression with the gene part ways at that point?

Knowing that will help determine whether it might one day need to be turned up or down to help patients, Liu says.

They also are further refining exactly what lncLOXL1 does and how it does it by looking at what genes/proteins are affected when it's knocked out and overexpressed.

"We are looking at what happens to expression of both the LOXL1 gene and its protein when we remove lncLOXL1 from the equation and when we overexpress it," Liu says.

They are also looking at other factors floating in the eye fluid with disease. Along with way too much protein, there are proinflammatory factors like transforming growth factor beta one, a protein with a wide range of functions from helping cells mature, grow, differentiate and even die, to promoting an inflammatory response; cytokines secreted by immune cells; and hydrogen peroxide, a product of high levels of oxidative stress.

They want to know if lncLOXL1 needs one or all these factors to do the damage they think it does. If they block these factors, for example, does the destruction still happen? Liu has already seen that treatment of human eye cells with transforming growth factor beta one impacts expression of this long, noncoding RNA. Now he is looking at things like what happens to levels of the LOXL1 protein.

They also are looking at the impact of environmental factors like ultraviolet light, since proximity to sunlight, like individuals who live in the mountains of Iceland, is an established risk factor for exfoliation glaucoma.

"From what we have seen so far, we don't think coding changes of this gene have anything to do with the disease, so it must be gene regulation," Liu says, and that could mean lncLOXL1.

A handful of years ago, Liu and colleagues at Duke University did a genetic association study—which looked at genetic risk factors—and found that variants of the gene LOXL1 in the noncoding region were associated with exfoliation glaucoma. The variance was in a sequence of the gene's DNA called the intron, which helps regulate gene , so how much of which proteins get made by the gene rather than actual protein production. Coding regions of genes that make proteins are called exons, and introns are considered non-coding regions.

The genetic variants appeared to impact not which proteins got made, but how much got made. With exfoliation glaucoma, it's definitely too much.

In addition to clogging fluid paths, over time the protein pileup appears to nibble away at the endothelial cells that line blood vessels as well as the pericytes, contractile cells that wrap around the endothelial cells and help give blood vessel walls strength and flexibility. The protein also weakens zonules, transparent tendons that help hold the lens of the eye in place.

Although inflammation contributes to the destruction in exfoliation glaucoma, the immune system often does not eliminate the dandruff-like flakes congesting fluid flow of the eye. Pressure inside the eye soars and the eyedrops that help the more common by increasing outflow and/or decreasing fluid production don't work. Surgery to improve outflow often does not work long either.

The current studies are primarily using eye tissue from the lens capsule of 20 patients with exfoliation glaucoma as well as 20 patients who needed cataract surgery and are considered the controls. One thing both populations have in common is they are older, which is when cataracts and symptoms of exfoliation glaucoma both tend to surface.

Liu notes that not everyone with one of the known gene variants develops , and that as with many diseases, it's likely a combination of and environment that's causative.

The aqueous humor directly provides nutrition to the eye and the invaluable fluid is normally replaced about every 90 minutes.

In recent years, long, noncoding RNAs, which as the name implies are longer than some of their colleagues like microRNA, have been associated with an increasing number of diseases including a wide variety of cancers and cardiovascular disease.

Explore further: Aqueous humor, microRNAs and glaucoma

Related Stories

Aqueous humor, microRNAs and glaucoma

April 11, 2018
Glaucoma—the leading cause of vision loss worldwide—includes a heterogeneous group of disorders. Primary open-angle glaucoma (POAG) and exfoliation glaucoma (XFG) are linked to decreased outflow of aqueous humor, which ...

New directions found in understanding, fighting glaucoma

February 26, 2018
Two distinctive handfuls of short molecules that regulate gene expression have been found in the eye fluid of patients with two distinct types of vision degenerating glaucoma.

Global genetic study involving different populations sheds light on glaucoma

August 8, 2017
Glaucoma is a group of diseases that damage the eye's optic nerve and results in vision loss and irreversible blindness in some people. The diseases usually occur on their own but when they are caused by other conditions ...

Exfoliation syndrome study reveals genetic mutation that protects against glaucoma

September 20, 2017
A leading cause of glaucoma and blindness is exfoliation syndrome, or XFS, an age-related disorder that results in excess fibrous material building up. Now, A*STAR scientists, along with an international research team, have ...

Study finds genetic link between thinner corneas and increased risk of glaucoma

January 25, 2018
Genetic studies in mice point to a protein called POU6F2, which can modulate corneal thickness, as a possible risk factor for glaucoma in humans, report Eldon Geisert of Emory University, and colleagues, January 25th in PLOS ...

Recommended for you

Geneticists make new discovery about how a baby's sex is determined

December 14, 2018
Medical researchers at Melbourne's Murdoch Children's Research Institute have made a new discovery about how a baby's sex is determined—it's not just about the X-Y chromosomes, but involves a 'regulator' that increases ...

Scientists identify method to study resilience to pain

December 14, 2018
Scientists at the Yale School of Medicine and Veterans Affairs Connecticut Healthcare System have successfully demonstrated that it is possible to pinpoint genes that contribute to inter-individual differences in pain.

Researchers uncover molecular mechanisms linked to autism and schizophrenia

December 13, 2018
Since the completion of the groundbreaking Human Genome Project in 2003, researchers have discovered changes to hundreds of places in the DNA, called genetic variants, associated with psychiatric diseases such as autism spectrum ...

CRISPR joins battle of the bulge, fights obesity without edits to genome

December 13, 2018
A weighty new study shows that CRISPR therapies can cut fat without cutting DNA. In a paper published Dec. 13, 2018, in the journal Science, UC San Francisco researchers describe how a modified version of CRISPR was used ...

Noncoding mutations contribute to autism risk

December 13, 2018
A whole-genome sequencing study of nearly 2,000 families has implicated mutations in 'promoter regions' of the genome—regions that precede the start of a gene—in autism. The study, which appears in the December 14 issue ...

New method for studying ALS more effectively

December 13, 2018
The neurodegenerative disease ALS causes motor neuron death and paralysis. However, long before the cells die, they lose contact with muscles as their axons atrophy. Researchers at Karolinska Institutet in Sweden have now ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.