Why the left hemisphere of the brain understands language better than the right

July 12, 2018, Ruhr-Universitaet-Bochum
Biopsychologists from Bochum: Onur Güntürkün, Erhan Genç and Sebastian Ocklenburg (from left). Credit: RUB, Marquard

Nerve cells in the brain region planum temporale have more synapses in the left hemisphere than in the right hemisphere – which is vital for rapid processing of auditory speech, according to the report published by researchers from Ruhr-Universität Bochum and Technische Universität Dresden in the journal Science Advances. There has already been ample evidence of left hemisphere language dominance; however, the underlying processes on the neuroanatomical level had not yet been fully understood.

A new form of magnetic resonance imaging (MRI) in combination with electroencephalography (EEG) measurements has made it possible to bundle insights into the microstructure of planum temporale with the speed of auditory speech processing. The team headed by Dr. Sebastian Ocklenburg, Patrick Friedrich, Christoph Fraenz, Prof Dr. Dr. h. c. Onur Güntürkün and Dr. Erhan Genç outlines their findings in an article published in the scientific journal Science Advances from July 11, 2018.

Left hemisphere language dominance

Using a simple experiment, researchers can demonstrate just how superior the is when it comes to the processing of auditory speech: when playing two different syllables – for example "Da" and "Ba" – to a person's left and right ear via headphones, most people will state that they only heard the syllable in the right ear. The reason: language that is perceived via the right ear is processed in the left hemisphere. When brainwaves are measured using EEG, it emerges that the left hemisphere processes auditory speech information more rapidly.

"Researchers have long determined that a brain region that is crucial for the processing of auditory speech, i.e. planum temporale, is frequently larger in the left hemisphere than in the right one," says Sebastian Ocklenburg from the biopsychology research unit in Bochum. In the brains of deceased individuals who had donated their bodies to science, Frankfurt-based researchers later discovered that the nerve cells in the left planum temporale have a larger number of neuronal synapses than those in the .

New measurement method facilitates hitherto impossible insights

"However, it had previously not been understood if that asymmetrical microstructure is the decisive factor for the superiority of the left hemisphere when it comes to the processing of auditory speech," explains Erhan Genç, likewise a member of the biopsychology research unit. Since a method for counting the number of neural synapses in living humans had not existed until very recently, that number could not be conclusively linked to the performance of auditory speech processing. The researchers have now closed this gap with the aid of so-called neurite orientation dispersion and density imaging.

By deploying this highly specific MRI technology, the bio-psychologists measured the density and spatial arrangement of planum temporale neurites in almost one hundred test participants. At the same time, they used EEG measurements to analyse the processing speed of auditory speech information in both the left and the right hemispheres in the same individuals.

Higher speed thanks to more neurites

The result: Test participants who were capable of processing auditory speech in the left hemisphere at a high speed possessed an extraordinarily high number of densely packed neurites in the left planum temporale. "It is because of this microstructure that processing of auditory is faster in the left hemisphere; those individuals are presumably also able to decode what they hear at higher temporal precision," concludes Ocklenburg. "Higher connectivity density thus appears to be a crucial component for the linguistic superiority of our left ," adds Genç.

Explore further: Images of the brain refute a theory of the 1960s on the domain of language

More information: Sebastian Ocklenburg et al. Neurite architecture of the planum temporale predicts neurophysiological processing of auditory speech, Science Advances (2018). DOI: 10.1126/sciadv.aar6830

Related Stories

Images of the brain refute a theory of the 1960s on the domain of language

December 20, 2017
In 1968, when there were no techniques to observe how the brain worked in vivo, the neurologist Norman Geschwind discovered that a region of the temporal lobe in deceased persons, the planum temporale, was larger in the left ...

Smarter brains run on sparsely connected neurons

May 17, 2018
The more intelligent a person, the fewer connections there are between the neurons in his cerebral cortex. This is the result of a study conducted by neuroscientists working with Dr. Erhan Genç and Christoph Fraenz at Ruhr-Universität ...

What you hear could depend on what your hands are doing

October 14, 2012
New research links motor skills and perception, specifically as it relates to a second finding—a new understanding of what the left and right brain hemispheres "hear." Georgetown University Medical Center researchers say ...

How musical training affects speech processing

December 5, 2017
Musical training is associated with various cognitive improvements and pervasive plasticity in human brains. Among its merits, musical training is thought to enhance the cognitive and neurobiological foundation of speech ...

Recommended for you

Wiring diagram of the brain provides a clearer picture of brain scan data

December 14, 2018
Already affecting more than five million Americans older than 65, Alzheimer's disease is on the rise and expected to impact more than 13 million people by 2050. Over the last three decades, researchers have relied on neuroimaging—brain ...

Scientists identify method to study resilience to pain

December 14, 2018
Scientists at the Yale School of Medicine and Veterans Affairs Connecticut Healthcare System have successfully demonstrated that it is possible to pinpoint genes that contribute to inter-individual differences in pain.

Parents' brain activity 'echoes' their infant's brain activity when they play together

December 13, 2018
When infants are playing with objects, their early attempts to pay attention to things are accompanied by bursts of high-frequency activity in their brain. But what happens when parents play together with them? New research, ...

In the developing brain, scientists find roots of neuropsychiatric diseases

December 13, 2018
The most comprehensive genomic analysis of the human brain ever undertaken has revealed new insights into the changes it undergoes through development, how it varies among individuals, and the roots of neuropsychiatric illnesses ...

Researchers find the cause of and cure for brain injury associated with gut condition

December 13, 2018
Using a mouse model of necrotizing enterocolitis (NEC)—a potentially fatal condition that causes a premature infant's gut to suddenly die—researchers at Johns Hopkins say they have uncovered the molecular causes of the ...

Researchers discover abundant source for neuronal cells

December 13, 2018
USC researchers seeking a way to study genetic activity associated with psychiatric disorders have discovered an abundant source of human cells—the nose.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.