Why the left hemisphere of the brain understands language better than the right

July 12, 2018, Ruhr-Universitaet-Bochum
Biopsychologists from Bochum: Onur Güntürkün, Erhan Genç and Sebastian Ocklenburg (from left). Credit: RUB, Marquard

Nerve cells in the brain region planum temporale have more synapses in the left hemisphere than in the right hemisphere – which is vital for rapid processing of auditory speech, according to the report published by researchers from Ruhr-Universität Bochum and Technische Universität Dresden in the journal Science Advances. There has already been ample evidence of left hemisphere language dominance; however, the underlying processes on the neuroanatomical level had not yet been fully understood.

A new form of magnetic resonance imaging (MRI) in combination with electroencephalography (EEG) measurements has made it possible to bundle insights into the microstructure of planum temporale with the speed of auditory speech processing. The team headed by Dr. Sebastian Ocklenburg, Patrick Friedrich, Christoph Fraenz, Prof Dr. Dr. h. c. Onur Güntürkün and Dr. Erhan Genç outlines their findings in an article published in the scientific journal Science Advances from July 11, 2018.

Left hemisphere language dominance

Using a simple experiment, researchers can demonstrate just how superior the is when it comes to the processing of auditory speech: when playing two different syllables – for example "Da" and "Ba" – to a person's left and right ear via headphones, most people will state that they only heard the syllable in the right ear. The reason: language that is perceived via the right ear is processed in the left hemisphere. When brainwaves are measured using EEG, it emerges that the left hemisphere processes auditory speech information more rapidly.

"Researchers have long determined that a brain region that is crucial for the processing of auditory speech, i.e. planum temporale, is frequently larger in the left hemisphere than in the right one," says Sebastian Ocklenburg from the biopsychology research unit in Bochum. In the brains of deceased individuals who had donated their bodies to science, Frankfurt-based researchers later discovered that the nerve cells in the left planum temporale have a larger number of neuronal synapses than those in the .

New measurement method facilitates hitherto impossible insights

"However, it had previously not been understood if that asymmetrical microstructure is the decisive factor for the superiority of the left hemisphere when it comes to the processing of auditory speech," explains Erhan Genç, likewise a member of the biopsychology research unit. Since a method for counting the number of neural synapses in living humans had not existed until very recently, that number could not be conclusively linked to the performance of auditory speech processing. The researchers have now closed this gap with the aid of so-called neurite orientation dispersion and density imaging.

By deploying this highly specific MRI technology, the bio-psychologists measured the density and spatial arrangement of planum temporale neurites in almost one hundred test participants. At the same time, they used EEG measurements to analyse the processing speed of auditory speech information in both the left and the right hemispheres in the same individuals.

Higher speed thanks to more neurites

The result: Test participants who were capable of processing auditory speech in the left hemisphere at a high speed possessed an extraordinarily high number of densely packed neurites in the left planum temporale. "It is because of this microstructure that processing of auditory is faster in the left hemisphere; those individuals are presumably also able to decode what they hear at higher temporal precision," concludes Ocklenburg. "Higher connectivity density thus appears to be a crucial component for the linguistic superiority of our left ," adds Genç.

Explore further: Images of the brain refute a theory of the 1960s on the domain of language

More information: Sebastian Ocklenburg et al. Neurite architecture of the planum temporale predicts neurophysiological processing of auditory speech, Science Advances (2018). DOI: 10.1126/sciadv.aar6830

Related Stories

Images of the brain refute a theory of the 1960s on the domain of language

December 20, 2017
In 1968, when there were no techniques to observe how the brain worked in vivo, the neurologist Norman Geschwind discovered that a region of the temporal lobe in deceased persons, the planum temporale, was larger in the left ...

Smarter brains run on sparsely connected neurons

May 17, 2018
The more intelligent a person, the fewer connections there are between the neurons in his cerebral cortex. This is the result of a study conducted by neuroscientists working with Dr. Erhan Genç and Christoph Fraenz at Ruhr-Universität ...

What you hear could depend on what your hands are doing

October 14, 2012
New research links motor skills and perception, specifically as it relates to a second finding—a new understanding of what the left and right brain hemispheres "hear." Georgetown University Medical Center researchers say ...

How musical training affects speech processing

December 5, 2017
Musical training is associated with various cognitive improvements and pervasive plasticity in human brains. Among its merits, musical training is thought to enhance the cognitive and neurobiological foundation of speech ...

Recommended for you

Overlooked signal in MRI scans reflects amount, kind of brain cells

September 24, 2018
An MRI scan often generates an ocean of data, most of which is never used. When overlooked data is analyzed using a new technique developed at Washington University School of Medicine in St. Louis, they surprisingly reveal ...

Even mild physical activity immediately improves memory function, study finds

September 24, 2018
People who include a little yoga or tai chi in their day may be more likely to remember where they put their keys. Researchers at the University of California, Irvine and Japan's University of Tsukuba found that even very ...

Thousands of unknown DNA changes in the developing brain revealed by machine learning

September 24, 2018
Unlike most cells in the rest of our body, the DNA (the genome) in each of our brain cells is not the same: it varies from cell to cell, caused by somatic changes. This could explain many mysteries—from the cause of Alzheimer's ...

Implant helps paralysed man walk again

September 24, 2018
Five years after he was paralysed in a snowmobile accident, a man in the US has learned to walk again aided by an electrical implant, in a potential breakthrough for spinal injury sufferers.

Common painkiller not effective for chronic pain after traumatic nerve injury

September 24, 2018
A new study out today in the Journal of Neurology finds that pregabalin is not effective in controlling the chronic pain that sometimes develops following traumatic nerve injury. The results of the international study, which ...

Breast milk may be best for premature babies' brain development

September 21, 2018
Babies born before their due date show better brain development when fed breast milk rather than formula, a study has found.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.