Researchers identify target for novel malaria vaccine

July 13, 2018, Yale University
Credit: CDC

A Yale-led team of researchers have created a vaccine that protects against malaria infection in mouse models, paving the way for the development of a human vaccine that works by targeting the specific protein that parasites use to evade the immune system. The study was published by Nature Communications.

Malaria is the second leading cause of infectious disease worldwide, and took more than a half million lives in 2013. To date, no completely effective exists, and infected individuals only develop partial immunity against disease symptoms. In a prior study, senior author Richard Bucala, M.D. described a unique protein produced by malaria , Plasmodium macrophage migration inhibitory factor (PMIF), which suppresses memory T cells, the infection-fighting cells that respond to threats and protect the body against reinfection.

In the new study, Bucala and his co-authors collaborated with Novartis Vaccines, Inc. to test an RNA-based vaccine designed to target PMIF. First, using a strain of the with PMIF genetically deleted, they observed that mice infected with that strain developed memory T cells and showed stronger anti-parasite immunity.

Next, the research team used two mouse models of malaria to test the effectiveness of a vaccine using PMIF. One model had early-stage liver infection from parasites carried by mosquitos, and the other, a severe, late-stage blood infection. In both models, the vaccine protected against reinfection. As a final test, the researchers transferred memory T cells from the immunized mice to "naïve" mice never exposed to malaria. Those mice were also protected.

The molecular structure of Plasmodium MIF, a protein produced by malaria parasites and the target of a Yale-developed vaccine. Credit: Richard Bucala

The research shows, first, that PMIF is critical to the completion of the parasite life cycle because it ensures transmission to new hosts, said the scientists, noting it also demonstrates the effectiveness of the anti-PMIF vaccine.

"If you vaccinate with this specific protein used by the malaria parasite to evade an immune response, you can elicit protection against re-infection," said Bucala. "To our knowledge, this has never been shown using a single antigen in fulminant blood-stage infection."

The next step for the research team is to develop a vaccine for individuals who have never had malaria, primarily young children. "The vaccine would be used in children so that they would already have an immune response to this particular malaria product, and when they became infected with malaria, they would have a normal T cell response, clear the parasite, and be protected from future infection," he stated.

The researchers also noted that because the PMIF protein has been conserved by evolution in different strains and targets a host pathway, it would be virtually impossible for the parasite to develop resistance to this vaccine. Numerous other parasitic pathogens also produce MIF-like proteins, said the scientists, suggesting that this approach may be generalizable to other parasitic diseases—such as Leishmaniasis, Hookworm, and Filariais—for which no vaccines exist.

Explore further: Study explores new strategy to develop a malaria vaccine

More information: Alvaro Baeza Garcia et al, Neutralization of the Plasmodium-encoded MIF ortholog confers protective immunity against malaria infection, Nature Communications (2018). DOI: 10.1038/s41467-018-05041-7

Related Stories

Study explores new strategy to develop a malaria vaccine

April 11, 2018
A serum developed by Yale researchers reduces infection from malaria in mice, according to a new study. It works by attacking a protein in the saliva of the mosquitos infected with the malaria parasite rather than the parasite ...

How malaria evades the body's immune response

July 12, 2012
(Medical Xpress) -- The parasites that cause human malaria and make it particularly lethal have a unique ability to evade destruction by the body’s immune system, diminishing its ability to develop immunity and fight ...

Discovery of key molecules involved in severe malaria – new target for malaria vaccine

December 4, 2017
Malaria is one of three major infectious diseases affecting approximately 300 million people every year, accounting for about 500,000 deaths, but effective vaccine development has not been successful. Among malaria parasites ...

Studying the body's immune response to malaria infection could help scientists find life-saving vaccines

January 4, 2017
Three malaria proteins that trigger an immune response in infected individuals have been identified by A*STAR researchers. These proteins could underpin a new vaccine against the world's deadliest parasitic disease.

Newly described human antibody prevents malaria in mice

March 19, 2018
Scientists have discovered a human antibody that protected mice from infection with the deadliest malaria parasite, Plasmodium falciparum. The research findings provide the basis for future testing in humans to determine ...

Recommended for you

Infants born to obese mothers risk developing liver disease, obesity

November 16, 2018
Infant gut microbes altered by their mother's obesity can cause inflammation and other major changes within the baby, increasing the risk of obesity and non-alcoholic fatty liver disease later in life, according to researchers ...

New study shows NKT cell subsets play a large role in the advancement of NAFLD

November 16, 2018
Since 2015 it has been known that the gut microbiota could have a direct impact on nonalcoholic fatty liver disease (NAFLD), which affects up to 12% of adults and is a leading cause of chronic liver disease. In the November ...

Antibiotic prescribing influenced by team dynamics within hospitals

November 15, 2018
Antibiotic prescribing by doctors is influenced by team dynamics and cultures within hospitals.

Zika may hijack mother-fetus immunity route

November 14, 2018
To cross the placenta, Zika virus may hijack the route by which acquired immunity is transferred from mother to fetus, new research suggests.

New research aims to help improve uptake of hepatitis C testing

November 14, 2018
New research published in Scientific Reports shows persisting fears about HIV infection may impact testing uptake for the hepatitis C Virus (HCV).

Maternally acquired Zika immunity can increase dengue disease severity in mouse pups

November 14, 2018
To say that the immune system is complex is an understatement: an immune response protective in one context can turn deadly over time, as evidenced by numerous epidemiological studies on dengue infection, spanning multiple ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.