Pucker up, baby! Lips take center stage in infants' brains, study says

July 9, 2018 by Kim Eckart, University of Washington
Pucker up, baby! Lips take center stage in infants' brains, study says
This colored "scalp map" (viewed from the top of a baby's head with the nose forward), shows the average amount of brain activity measured by EEG sensors in response to touch to the baby's body. The image shows that hand touch evokes activity on one side, foot touch evokes activity at the middle, and lip touch evokes very strong activity on both sides. Credit: UW Institute for Learning & Brain Sciences

A typically developing 2-month-old baby can make cooing sounds, suck on her hand to calm down and smile at people.

At that age, the mouth is the primary focus: Such young infants aren't yet reaching for objects with their hands or using their feet to get around, so the lips—for eating, pacifying and communicating—multitask.

And at the same time, new research reveals a special neural signature associated with touching the baby's lips, an indicator of how soon infants' brains begin to make sense of their own bodies and a first step toward other developmental milestones.

A study led by the University of Washington Institute for Learning & Brain Sciences (I-LABS) uses infant imaging to gauge how the , foot and lips are represented in the brains of 2-month-olds—a much younger age than has been studied previously. It is believed to be the first to reveal the greater neurological activity associated with the lips than with other .

"We are now able to use safe brain science technologies to study how infants represent themselves and other people. This new field of infant social neuroscience allows us to detect changes in brain activity as infants see, hear and experience ," said lead author Andrew Meltzoff, a UW psychology professor and co-director of I-LABS.

The study, published June 25 in Developmental Science, involved 25 2-month-old infants, each of whom wore a cap equipped with special sensors that measure brain activity by detecting minute electrical signals on the baby's scalp, a technique called electroencephalography (EEG). Researchers used a handheld wand to deliver multiple light taps to each baby's left foot, left hand and the middle of the upper lip. EEG registered the infants' to the touch of each body part.

The way the human brain represents body parts, called a "neural body map," has been studied extensively in adults, but much less so in infants. The neural activity produced by a touch of the body is focused in the somatosensory cortex, a strip of tissue that runs between the ears, over the top of the head. There, at varying locations and degrees of strength, the brain processes touch. A touch to the hand, for example, registers in a separate place and with a stronger signal over the somatosensory cortex than a touch to a less sensitive part of the body such as the forearm, the back or the foot.

As young as 2 months of age, the new research finds, babies already have a well-formed body map. They display a distinctive neural signature for touches to different body parts. A touch to the foot causes activity near the top of the brain at about the midline; a touch to one of the hands produces activity in lateral portions of the brain, opposite to the hand touched. A touch to the middle of the lip produces the strongest response of all, in lateral regions on both sides of the brain.

These findings indicate the importance of the lips to the infant's body map, researchers said. The prominent brain signal obtained from touching the baby's lips could be related both to the baby's reliance on the mouth for sucking and also to the evolution of language.

"Lips are important for babies," said Meltzoff. "They use lips for sucking, but lips are also used to articulate speech sounds and to communicate emotions—a pout versus a smile. Young babies are lip experts, and their brains reflect this."

This study follows other I-LABS research published earlier this year that examined infant social development using a magnetoencephalography (MEG) brain-imaging machine, a slightly more sophisticated technology. In that study, the babies watched videos of an adult hand and foot being touched, and also had their own hand or foot touched. The activation of similar regions of the brain's during both felt touch and observed touch showed that the infant brain was able to detect the similarity between "self" and "other."

This connection between self and other is a step toward imitation, itself a chief way that learn from other people prior to language. Babies can imitate their parents' hand and facial movements because their brain recognizes, for instance, that their hands correspond to mom's hands, and that their lips correspond to mom's lips. The researchers speculate that a baby's ability to recognize that another person is "like them," in terms of their body, rests on neural body maps.

Co-author Peter Marshall, chair of the department of psychology at Temple University, said, "The new study with 2-month-olds is an important step toward understanding how maps develop and change in the baby brain. It will be intriguing to investigate whether there are alterations in the hand representations as babies begin to reach, foot representations as they begin to walk, and lip representations as they begin to articulate speech."

There are also practical implications of this research. "The finding that gentle touch is associated with a measurable, organized response allows us to explore the benefits of touch for baby brain development and to look at individual differences to touch," said co-author Joni Saby, a postdoctoral fellow at Children's Hospital of Philadelphia.

Explore further: A 'touching sight': How babies' brains process touch builds foundations for learning

More information: Andrew N. Meltzoff et al, Neural representations of the body in 60-day-old human infants, Developmental Science (2018). DOI: 10.1111/desc.12698

Related Stories

A 'touching sight': How babies' brains process touch builds foundations for learning

January 16, 2018
Touch is the first of the five senses to develop, yet scientists know far less about the baby's brain response to touch than to, say, the sight of mom's face, or the sound of her voice.

Baby brains are tuned to the specific actions of others

October 30, 2013
Imitation may be the sincerest form of flattery for adults, but for babies it's their foremost tool for learning. As renowned people-watchers, babies often observe others demonstrate how to do things and then copy those body ...

Researchers pioneering research on 'body maps' in babies' brains

September 8, 2015
For more than half a century, scientists have studied how the surface of the body is mapped in parts of the brain associated with touch.

A prescription for touch: Early experiences shape preterm babies' brains

March 16, 2017
Newborn babies experience the world through touch. Now, researchers who have measured the brain responses of 125 infants—including babies who were born prematurely and others who went full-term—show that a baby's earliest ...

Touch influences how infants learn language

April 23, 2014
(Medical Xpress)—Tickling a baby's toes may be cute but it's also possible that those touches could help babies learn the words in their language. Research from Purdue University shows that a caregiver's touch could help ...

Brain scientists identify 'cross talk' between neurons that control touch in mice

May 29, 2018
Scientists report they have uncovered a previously overlooked connection between neurons in two distinct areas of the mammalian brain. The neurons, they say, control the sense of touch, and their experiments in mice offer ...

Recommended for you

Researchers discover abundant source for neuronal cells

December 13, 2018
USC researchers seeking a way to study genetic activity associated with psychiatric disorders have discovered an abundant source of human cells—the nose.

In the developing brain, scientists find roots of neuropsychiatric diseases

December 13, 2018
The most comprehensive genomic analysis of the human brain ever undertaken has revealed new insights into the changes it undergoes through development, how it varies among individuals, and the roots of neuropsychiatric illnesses ...

How the brain tells you to scratch that itch

December 13, 2018
It's a maddening cycle that has affected us all: it starts with an itch that triggers scratching, but scratching only makes the itchiness worse. Now, researchers have revealed the brain mechanism driving this uncontrollable ...

Study confirms role of brain's support cells in Huntington's, points to new therapies

December 13, 2018
New research gives scientists a clearer picture of what is happening in the brains of people with Huntington's disease and lays out a potential path for treatment. The study, which appears today in the journal Cell Stem Cell, ...

Researchers identify pathway that drives sustained pain following injury

December 13, 2018
A toddler puts her hand on a hot stove and swiftly withdraws it. Alas, it's too late—the child's finger has sustained a minor burn. To soothe the pain, she puts the burned finger in her mouth.

Pain: Perception and motor impulses arise in brain independently of one another

December 13, 2018
Pain is a negative sensation that we want to get rid of as soon as possible. In order to protect our bodies, we react by withdrawing the hand from heat, for example. This action is usually understood as the consequence of ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.