Cellular communication system in mice helps control female fertility

August 2, 2018 by Tyler Fox, University of Wisconsin-Madison
Credit: CC0 Public Domain

When Joan Jorgensen was an undergraduate at the University of Wisconsin-Madison, her roommate confided that she had just one period before going through menopause in high school. Doctors told Jorgensen's roommate that she would never have biological children.

"This is devastating news at any age, let alone a girl," says Jorgensen, who is now a professor in the Department of Comparative Biosciences at the UW-Madison School of Veterinary Medicine.

That experience stuck with Jorgensen, whose research focuses on fertility problems like premature ovarian failure, which leads to an early loss of viable eggs and which her roommate experienced. Using animal models, Jorgensen tries to understand how female fertility is affected by development of the ovary, which includes how cells organize to support eggs for the entire lifetime of that individual.

In new research published Aug. 2 in the journal PLOS Genetics, Jorgensen, graduate researcher Anqi Fu and others discovered that two work together to construct a cellular communication system in the ovaries of mice to maintain healthy eggs. The researchers describe this system as a series of junctions between the eggs and the cells that surround and support the eggs, known as granulosa cells. Both cells reach out to form multiple junctions that exchange information and ensure the proper development and survival of the egg leading up to ovulation.

This research provides a piece of the puzzle of female infertility, and Jorgensen looks to build off these findings to uncover more information on premature ovarian failure and other . Jorgensen and Fu collaborated with researchers at the University of Melbourne, Monash University, and the University of Toronto to complete this work.

Premature ovarian failure, in which the ovaries stop producing estrogen, is often caused by premature loss of the egg supply and affects as many as 3 percent of all women, according to the National Institutes of Health. In most cases the cause is unknown. Problems with the development of follicles—the combination of an egg and its surrounding granulosa cells—are likely behind many cases of premature ovarian failure.

Jorgensen's lab had previously found that mice missing two genes, IRX3 and IRX5, had defective follicles. In the current study, they looked for how these genes work together to keep follicles healthy.

The researchers showed that mice with either IRX3 or IRX5 deleted had fewer pups, which led the researchers to suspect that communication within the follicle was breaking down. Looking within the ovary, they tracked the expression of each gene.

Early on, the researchers saw that IRX3 and IRX5 were expressed throughout the follicle. But as the follicle began to mature, IRX3 became isolated to the egg, while IRX5 was only expressed in the granulosa cells.

From their separate vantage points, these two genes synchronize the two cell types to help them establish communication networks. Jorgensen's team saw that the granulosa cells and the extend parts of their membranes to form junctions with each other. These junctions allow signals to be transported in both directions. With IRX3 or IRX5 deleted, these junctions fell apart, interrupting communication within the follicle and destabilizing it.

"We think of IRX3 and IRX5 as the supervisors in connecting these two ," says Jorgensen.

Despite this discovery of a role for these genes in follicle development in mice, researchers still aren't sure if these same genes have a similar effect in humans.

"That's another thing we would like to learn—we want to be able to link it to human causes," says Jorgensen.

Jorgensen and Fu say the next step will be to evaluate exactly how these genes direct these key cell-to-cell interactions.

"If we can figure out how those networks are placed, we think that will be a major step in understanding the basic foundations of how follicles are built," says Jorgensen. "That will go a long way towards helping women that have infertility, especially those that undergo premature ovarian failure."

Explore further: Study prompts rethink of how ovaries develop

Related Stories

Study prompts rethink of how ovaries develop

February 8, 2013
(Medical Xpress)—New research from the University of Adelaide will rewrite the text books on how an ovary is formed, as well as providing new insights into women's health and fertility.

Study solves ovarian cell mystery, shedding new light on reproductive disorders

May 6, 2015
Scientists at the National Institutes of Health have solved a long-standing mystery about the origin of one of the cell types that make up the ovary. The team also discovered how ovarian cells share information during development ...

Male sex hormones in ovaries essential for female fertility

May 26, 2010
Male sex hormones, such as testosterone, have well defined roles in male reproduction and prostate cancer. What may surprise many is that they also play an important role in female fertility. A new study finds that the presence ...

Oocyte-specific gene mutations cause premature ovarian failure

May 22, 2008
Mutations in a gene called FIGLA cause premature ovarian failure in at least a percentage of women who suffer from the disorder, said researchers from Baylor College of Medicine in Houston and Shandong University in China ...

Researchers identify hundreds of genes controlling female fertility

September 22, 2007
Researchers at UT Southwestern Medical Center have found nearly 350 genes related to female fertility. Their research may open the door to much wider study in the poorly understood field of infertility.

Source of tumor growth in aggressive prostate cancer found

June 17, 2013
Researchers have discovered a molecular switch that explains, at least in part, how some fast-growing prostate cancers become resistant to hormone treatment, a new study conducted in human cell cultures and mice finds. The ...

Recommended for you

Importance of cell cycle and cellular senescence in the placenta discovered

October 15, 2018
Working with researchers from Stanford University and St. Anna Children's Cancer Research, researchers from Jürgen Pollheimer's laboratory at the Medical University of Vienna's Department of Obstetrics and Gynecology have ...

Team's study reveals hidden lives of medical biomarkers

October 12, 2018
What do medical biomarkers do on evenings and weekends, when they might be considered off the clock?

Researchers find a 'critical need' for whole genome sequencing of young cancer patients

October 12, 2018
St. Jude Children's Research Hospital has re-defined the gold standard for diagnostic testing of childhood cancer patients in the precision-medicine era and has implemented the testing for new cancer patients. The findings ...

Novel genetic study sheds new light on risk of heart attack

October 12, 2018
Loss of a protein that regulates mitochondrial function can greatly increase the risk of myocardial infarction (heart attack), Vanderbilt scientists reported Oct. 3 in the journal eLife.

Study: DNA websites cast broad net for identifying people

October 11, 2018
About 60 percent of the U.S. population with European heritage may be identifiable from their DNA by searching consumer websites, even if they've never made their own genetic information available, a study estimates.

First two papers based on studies using full set of data in the UK Biobank published

October 11, 2018
Two teams of researchers have independently published papers describing research conducted using the full set of data in the UK Biobank—both in the journal Nature. The first team comprised researchers from the U.K., Australia ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.