Function of gene mutations linked to neurological diseases identified

August 10, 2018, Yale University
VPS13 family members mediate lipid transfer between organelles at membrane contact sites. Bottom left: fluorescence image shows the localization of VPS13C (magenta) at contacts between the ER (green) and a lysosome (blue). Bottom right: fluorescence image showing the localization of VPS13A (magenta) at contacts between the ER (green) and a mitochondrion (blue). Credit: Yale University

Several gene mutations have been linked to Parkinson's disease, but exactly how and where some of them cause their damage has been unclear. A new Yale study, published in the Journal of Cell Biology, shows that one of the genes whose mutations are responsible for a familial form of Parkinson's encodes a protein that controls the transfer of lipids between membranes of cell organelles.

The labs of Yale's Pietro De Camilli and Karin Reinisch investigated the role of VPS13 proteins whose dysfunction play a role in a variety of neurological disorders, including Parkinson's. They found that VPS13 proteins can extract lipids from cellular membranes, harbor them in a waterproof cavity, and transfer them to adjacent membranes. VPS13 are localized at sites within the cell where organelles are in close proximity to each other—so-called contact sites—and function as tethers between them making lipid transfer more efficient.

VPS13 family members operate at different sites within the cell and are associated with different neurological disorders. VPS13C, the protein associated with Parkinson's disease, acts at contacts between the endoplasmic reticulum (the organelle where most lipids are synthesized) and endosomes/lysosomes (the organelles where most cell components are degraded). Another, VPS13A, is associated with a Huntington's-like syndrome (Chorea-Acanthocytosis) and acts at contacts between the and mitochondria, the energy centers of the cell.

As other Parkinson's disease genes also encode proteins of the endo-lysosomal system, the new insight may help identify shared cellular mechanisms in Parkinson's disease resulting from mutations in different genes and thus help design new therapies for this condition, the authors say. Nikit Kumar and Marianna Leonzino of Yale are first authors of the study.

Explore further: Lyosomes and mitochondria chat each other up in cell

More information: Nikit Kumar et al. VPS13A and VPS13C are lipid transport proteins differentially localized at ER contact sites, The Journal of Cell Biology (2018). DOI: 10.1083/jcb.201807019

Related Stories

Lyosomes and mitochondria chat each other up in cell

January 24, 2018
Northwestern Medicine scientists have discovered that two key cellular structures, called mitochondria and lysosomes, come into direct contact with each other in the cell to regulate their respective functions. This rare ...

Molecular aid to insulin secretion identified

February 17, 2017
Blood sugar triggers the secretion of insulin from cells in the pancreas, a process that is impaired in diabetes. A team of Yale researchers have identified a mechanism at the membranes of these pancreatic cells that controls ...

Genetic defects in the cell's 'waste disposal system' linked to Parkinson's disease

November 14, 2017
An international study has shed new light on the genetic factors associated with Parkinson's disease, pointing at a group of lysosomal storage disorder genes as potential major contributors to the onset and progression of ...

Toward a better understanding of Parkinson's disease

July 4, 2018
A new study, published today in Nature Structural and Molecular Biology, moves researchers closer to understanding one of the crucial proteins involved in Parkinson's disease.

Failure in recycling cellular membrane may be a trigger of Parkinson's

February 23, 2017
A genetic mutation found in patients with early-onset Parkinson's disease has been used to create a mouse model of the disease. The advance adds to growing evidence that—at least in a subset of patients—the neurodegenerative ...

New evidence sheds light on how Parkinson's disease may happen

June 14, 2018
Researchers at Baylor College of Medicine and Texas Children's Hospital have identified unexpected new key players in the development of an early onset form of Parkinson's disease called Parkinsonism. These key players are ...

Recommended for you

New transgenic model of Parkinson's illuminates disease biology

October 11, 2018
Parkinson's disease (PD) is a neurodegenerative disorder that presents clinically with abnormal movement and tremors at rest. In the brain, PD is marked by the accumulation of the protein, α-synuclein (αS), into clumps ...

Early Parkinson's patients waiting too long to seek medical evaluation

September 27, 2018
The time between diagnosis and the institution of symptomatic treatment is critical in the effort to find a cure for Parkinson's Disease (PD). A paper published in Nature Partner Journal: Parkinson's Disease notes too many ...

Molecule capable of halting and reverting neurodegeneration caused by Parkinson's disease identified

September 25, 2018
The small SynuClean-D molecule interrupts the formation of the alpha-synuclein amyloid fibres responsible for the onset of Parkinson's disease, and reverts the neurodegeneration caused by the disease. The study, headed by ...

Genomic dark matter activity connects Parkinson's and psychiatric diseases

September 20, 2018
Dopamine neurons are located in the midbrain, but their tendril-like axons can branch far into the higher cortical areas, influencing how we move and how we feel. New genetic evidence has revealed that these specialized cells ...

Gene therapy shown to remove core component of Parkinson's disease

September 14, 2018
An international team led by Rush researcher Jeffrey Kordower, Ph.D., has moved a step closer to developing a treatment to clear brain cells of a protein that is an integral cause of Parkinson's disease. The team published ...

ADHD may increase risk of Parkinson's disease and similar disorders

September 12, 2018
While about 11 percent of children (4-17 years old) nationwide have been diagnosed with attention-deficit hyperactivity disorder (ADHD), the long-term health effects of having ADHD and of common ADHD medications remains understudied. ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.