Breast cancer breakthrough: Some tumors can stop their own spread

August 27, 2018, Garvan Institute of Medical Research
Three-dimensional culture of human breast cancer cells, with DNA stained blue and a protein in the cell surface membrane stained green. Image created in 2014 by Tom Misteli, Ph.D., and Karen Meaburn, Ph.D. at the NIH IRP.

Certain types of breast tumors can send signals that freeze the growth of their own secondary cancers, according to a major new study co-led by Australia's Garvan Institute of Medical Research.

The findings, uncovered in mice and patient tumours, are published in Nature Cell Biology today. They reveal a previously unseen 'ecosystem' in advanced breast cancer, in which the primary breast tumour emits signals that halt the growth of secondary tumours elsewhere in the body.

The spread of cancer beyond the original tumour—known as metastasis—is the most deadly aspect of most cancers. Once a breast cancer has spread to other parts of the body, treatments are far less effective and a patient's prognosis worsens sharply. In Australia, 8 women die from breast cancer every single day1.

"This new research has yielded that rare thing," says Dr. Christine Chaffer (Garvan), "- a clue from the cancer itself about new possibilities to fight its spread. Our goal is to work out how we can mimic this 'freezing' of secondary cancers, so that one day we might influence all breast cancers to keep their secondary tumours in check."

The researchers found that, in mice, primary breast tumours can influence 'breakaway cells' that have left the primary tumour to establish new tumours throughout the body. The primary tumour sends its message via the immune system, through an 'inflammatory response' provoked by the tumour. Immune cells spread through the body, locating the sites where breakaway cells have settled in preparation for the launch of new secondary tumours. Once the immune cells locate the breakaway cells, remarkably they are able to 'freeze' them—halting tumour growth.

"When these breakaway cells are settling, before they have established a new tumour, they are particularly vulnerable," explains Dr. Chaffer, "because they are in an intermediate state, and their identity isn't very solid. It's at this point that the immune system can intervene."

"When breakaway cells are forced to remain in the transition state, they don't grow very well," remarks Dr. Sandra McAllister (Brigham and Women's Hospital and Harvard Medical School, Boston), who co-led the research with Dr. Chaffer, "and their ability to form a new tumour is severely compromised. So, remarkably, by activating the immune response, the primary tumour essentially shuts down its own spread."

Crucially, there is indirect evidence that the same process may also be happening in people. The team found that, in a group of 215 breast cancer patients at high risk for developing metastasis, patients with high levels of the same type of immune response had better overall survival compared to those with low levels.

Dr. Chaffer and her lab are now devising how this discovery might be applicable in the clinic.

"When you have a primary tumour, there are untold numbers of breakaway cells that will travel throughout the body—but not all of them will form tumours," she says. "By some estimates less than 0.02% of breakaway cells will form secondary tumours2-4- so we have a real opportunity to bring this number down to zero."

They have already discovered some of the signals the immune cells are sending to keep metastasis at bay. But they are casting a wide net, and looking at this process from many angles.

"We want to understand exactly what the tumour is releasing to activate this immune response, and how immune cells are targeting the secondary sites," concludes Dr. Chaffer. "In principle, all of these steps present therapeutic opportunities that could be used to stop a cancer from developing any further."

The researchers hope to use the new information to find ways to suppress the spread of cancer in all breast tumours. In addition, they hope to apply their findings beyond breast cancer, to determine if similar processes may be exploited to suppress spread in other tumour types.

Explore further: Metastatic lymph nodes can be the source of distant metastases in mouse models of cancer

More information: Zafira Castaño et al, IL-1β inflammatory response driven by primary breast cancer prevents metastasis-initiating cell colonization, Nature Cell Biology (2018). DOI: 10.1038/s41556-018-0173-5

  1. National Breast Cancer Foundation www.nbcf.org.au
  2. Luzzi, K.J. et al. Multistep nature of metastatic inefficiency: dormancy of solitary cells after successful extravasation and limited survival of early micrometastases. The American journal of pathology 153, 865- 873 (1998).
  3. Cameron, M.D. et al. Temporal progression of metastasis in lung: cell survival, dormancy, and location dependence of metastatic inefficiency. Cancer research 60, 2541-2546 (2000).
  4. Chambers, A.F., Groom, A.C. & MacDonald, I.C. Dissemination and growth of cancer cells in metastatic sites. Nat Rev Cancer 2, 563-572 (2002).

Related Stories

Metastatic lymph nodes can be the source of distant metastases in mouse models of cancer

March 22, 2018
A study by Massachusetts General Hospital (MGH) investigators finds that, in mouse models, cancer cells from metastatic lymph nodes can escape into the circulation by invading nodal blood vessels, leading to the development ...

Particle shows promise to prevent the spread of triple-negative breast cancer

May 18, 2018
USC researchers have pinpointed a remedy to prevent the spread of triple-negative breast cancer. Metastatic breast cancer is a leading cause of death for women. The findings appear today in Nature Communications.

For aggressive breast cancer in the brain, researchers clarify immune response

April 17, 2018
Once it has begun to spread in the body, approximately half of patients with an aggressive breast cancer type will develop cancer in the brain. Researchers at the University of North Carolina Lineberger Comprehensive Cancer ...

Researchers identified a protein associated with breast cancer

April 18, 2018
Researchers at UT Southwestern Medical Center have identified a protein that is strongly associated with metastatic breast cancer and that could be a target for future therapies.

Prognostic role of elevated mir-24-3p in breast cancer

March 1, 2018
Despite improvements in local, regional and systemic therapies for breast cancer, 40,610 women are expected to die from metastatic breast cancer in the US in 2017.

New bone-in technique tests therapies for breast cancer metastasis

April 21, 2017
A new laboratory technique developed by researchers at Baylor College of Medicine and other institutions can rapidly test the effectiveness of treatments for life-threatening breast cancer metastases in bone. The study appears ...

Recommended for you

Researchers find adult stem cell characteristics in aggressive cancers from different tissues

September 19, 2018
UCLA researchers have discovered genetic similarities between the adult stem cells responsible for maintaining and repairing epithelial tissues—which line all of the organs and cavities inside the body—and the cells that ...

Ketogenic diet reduces body fat in women with ovarian or endometrial cancer

September 19, 2018
Women with ovarian or endometrial cancer who followed the ketogenic diet for 12 weeks lost more body fat and had lower insulin levels compared to those who followed the low-fat diet recommended by the American Cancer Society, ...

Eating foods with low nutritional quality ratings linked to cancer risk in large European cohort

September 18, 2018
The consumption of foods with higher scores on the British Food Standards Agency nutrient profiling system (FSAm-NPS), reflecting a lower nutritional quality, is associated with an increased risk of developing cancer, according ...

Could the zika virus fight the brain cancer that killed john McCain?

September 18, 2018
(HealthDay)—Preliminary research in mice suggests that the Zika virus might be turned from foe into friend—enlisted to curb deadly glioblastoma brain tumors.

CRISPR screen reveals new targets in more than half of all squamous cell carcinomas

September 18, 2018
A little p63 goes a long way in embryonic development—and flaws in p63 can result in birth defects like cleft palette, fused fingers or even missing limbs. But once this early work is done, p63 goes silent, sitting quietly ...

Enlarged genotype-phenotype correlation for a three-base pair deletion in neurofibromatosis type 1

September 18, 2018
International collaborative research led by Ludwine Messiaen, Ph.D., shows that while a three-base pair, in-frame deletion called p.Met992del in the NF1 gene has a mild phenotype for people with the genetic disorder neurofibromatosis ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.