Particle shows promise to prevent the spread of triple-negative breast cancer

May 18, 2018 by Cristy Lytal, University of Southern California
A tiny lipid-based particle could deliver a drug that would fight the spread of triple-negative breast cancer. Credit: Illustration/Diana Molleda

USC researchers have pinpointed a remedy to prevent the spread of triple-negative breast cancer. Metastatic breast cancer is a leading cause of death for women. The findings appear today in Nature Communications.

The study comes from the lab of USC Stem Cell researchers at the Keck School of Medicine of USC and offers a novel solution to suppress from metastasizing into the lungs. It's positive news for patients with triple-negative cancer – the deadliest type of breast cancer. Most breast cancers are fueled either by estrogen, progesterone or a protein called HER2, so many breast cancer therapies focus on these three vulnerabilities. But triple-negative breast cancer isn't fueled by any of them, which makes it particularly difficult to treat. It comprises 20 percent of breast cancer cases and researchers are intensely interested in finding new treatments for it.

In addition, few treatment options target metastasis— cancer that has spread. And typically, "these treatments are associated with high toxicity," said Min Yu, an assistant professor of stem cell biology and regenerative medicine, and a principal investigator at the Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research at USC, and the USC Norris Comprehensive Cancer Center.

"A better understanding of tumor cells and their interactions with organs and tissues could help us design targeted therapies specific for metastasis."

Preventing breast cancer metastasis

In Yu's laboratory, postdoc Oihana Iriondo and her colleagues showed that by inhibiting a protein called TAK1, they were able to reduce lung metastases in mice with triple-negative breast cancer. It appears that TAK1 enables malignant cells from the breast to survive in the lungs and form new metastatic tumors. Metastases are the most common cause of cancer-related death.

There's already a potential drug, called 5Z-7-Oxozeaenol or OXO, that can inhibit TAK1—and presumably make it much more difficult for to form lung metastases. However, OXO is not stable in the blood and wouldn't work in patients or preventing metastatic spread of breast cancer.

To overcome that obstacle, Yu and her lab teamed up with the laboratory of Pin Wang at the USC Viterbi School of Engineering. Wang's team developed a nanoparticle – consisting of a tiny fatty sac – that works like a smart bomb to carry drugs through the bloodstream and deliver them directly to tumors. The scientists loaded this nanoparticle with OXO, and used it to treat mice that had been injected with human breast cancer cells. While OXO did not shrink primary tumors in the breast, it greatly reduced metastatic tumors in the lungs with minimal toxic side effects.

"For patients with , systemic chemotherapies are largely ineffective and highly toxic," Yu said. "So nanoparticles are a promising approach for delivering more targeted treatments, such as OXO, to stop the deadly process of metastasis."

Metastatic breast cancer is also classified as Stage 4 breast cancer once it's spread to other parts of the body, usually the lungs, liver or brain. It reaches these organs by penetrating the circulatory or lymph system and migrating through blood vessels, according to the National Breast Cancer Foundation.

Breast cancer is the most common cancer in American women, except for skin cancers, and the average risk of developing breast cancer is 1 in 8 for a woman in the United States, according to the American Cancer Society. About 266,120 new cases of invasive are diagnosed in women each year, and about 40,920 women will die from it, the ACS estimates.

The USC research is in early-stage development using animal tests. The method the researchers discovered shows promise, but more research will be needed before it could be applied to humans for treatment.

Explore further: Breast cancer: Discovery of a protein linked to metastasis

More information: Oihana Iriondo et al. TAK1 mediates microenvironment-triggered autocrine signals and promotes triple-negative breast cancer lung metastasis, Nature Communications (2018). DOI: 10.1038/s41467-018-04460-w

Related Stories

Breast cancer: Discovery of a protein linked to metastasis

May 7, 2018
Jean-François Côté, a researcher at the Montreal Clinical Research Institute (IRCM) and professor at Université de Montréal's Faculty of Medicine, studies metastasis, the leading cause of cancer-related death. Recently, ...

Researchers identified a protein associated with breast cancer

April 18, 2018
Researchers at UT Southwestern Medical Center have identified a protein that is strongly associated with metastatic breast cancer and that could be a target for future therapies.

Prognostic role of elevated mir-24-3p in breast cancer

March 1, 2018
Despite improvements in local, regional and systemic therapies for breast cancer, 40,610 women are expected to die from metastatic breast cancer in the US in 2017.

Researchers uncover how cancer stem cells drive triple-negative breast cancer

February 8, 2018
Cleveland Clinic researchers have published findings in Nature Communications on a new stem cell pathway that allows a highly aggressive form of breast cancer - triple-negative breast cancer - to thrive.

Researchers identify compound to prevent breast cancer cells from activating in brain

March 22, 2018
Researchers at Houston Methodist used computer modeling to find an existing investigational drug compound for leukemia patients to treat triple negative breast cancer once it spreads to the brain.

Breast cancer's spread routes mapped

February 27, 2018
Breast cancer spreads to other organs in the body according to certain specific patterns. This has been shown by a team of researchers from Karolinska Institutet and KTH in Sweden and the University of Helsinki in Finland ...

Recommended for you

Researchers decipher the genome in chronic lymphocytic leukaemia

May 23, 2018
A team of researchers from University of Barcelona (UB) and their collaborators report for the first time the complete epigenome of chronic lymphocytic leukaemia, the most common type of leukaemia. The study, published in ...

Scientists discover how breast cancer hibernates: study

May 22, 2018
Scientists have identified the mechanism that allows breast cancer cells to lie dormant in other parts of the body only to reemerge years later with lethal force, according to a study published Tuesday.

Researcher: Big data, networks identify cell signaling pathways in lung cancer

May 22, 2018
A team of scientists led by University of Montana cell biologist Mark Grimes has identified networks inside lung cancer cells that will help understand this cancer and fight it with drug treatments.

Downward-facing mouse: Stretching reduces tumor growth in mouse model of breast cancer

May 22, 2018
Many cancer patients seek out gentle, movement-based stretching techniques such as yoga, tai chi and qigong, but does stretching have an effect on cancer? While many animal studies have attempted to quantify the effects of ...

Resetting the epigenetic balance for cancer therapy

May 22, 2018
Though mutations in a gene called MLL3 are common across many types of cancers, their relationship to the development of the disease has been unclear. Now, a Northwestern Medicine study has identified an epigenetic imbalance ...

Compound in citrus oil could reduce dry mouth in head, neck cancer patients

May 21, 2018
A compound found in citrus oils could help alleviate dry mouth caused by radiation therapy in head and neck cancer patients, according to a new study by researchers at the Stanford University School of Medicine.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.