Reducing NOVA1 gene helps prevent tumor growth in most common type of lung cancer

August 6, 2018, University of Michigan
Lung CA seen on CXR. Credit: James Heilman, MD/Wikipedia

Researchers have identified a gene that when inhibited or reduced, in turn, reduced or prevented human non-small cell lung cancer tumors from growing.

When mice were injected with non-small cell that contained the gene NOVA1, three of four mice formed tumors. When the mice were injected with without NOVA1, three of four mice remained tumor-free.

The fourth developed a tumor, but it was very small compared to the mice with the NOVA1 tumor cells, said Andrew Ludlow, first author on the study and assistant professor at the University of Michigan School of Kinesiology.

The research appears online today in Nature Communications. Ludlow did the work while a postdoctoral fellow at the University of Texas Southwestern Medical Center, in the shared lab of Woodring Wright, professor of cell biology and internal medicine, and Jerry Shay, professor of cell biology.

The study found that in cancer cells, the NOVA1 gene is thought to activate telomerase, the enzyme that maintains telomeres—the protective caps on the ends of chromosomes that preserve genetic information during cell division (think of the plastic aglets that prevent shoelace ends from fraying).

Telomerase isn't active in healthy adult tissues, so telomeres degrade and shorten as we age. When they get too short, the body knows to remove those damaged or dead cells.

In most cancers, telomerase is reactivated and telomeres are maintained, thus preserving the genetic material, and these are the cells that mutate and become immortal.

Telomerase is present in most cancer types, and it's an attractive therapeutic target for cancer. However, scientists haven't had much luck inhibiting telomerase activity in cancer, Ludlow said.

Ludlow's group wanted to try a new approach, so they screened cancer cell lines for splicing genes ( that modify RNA) that might regulate telomerase in cancer, and identified NOVA1.

They found that reducing the NOVA1 gene reduced , which led to shorter telomeres, and couldn't survive and divide.

Researchers only looked at non-small cell lung cancers, and NOVA1 was present in about 70 percent of them.

"Non-small cell lung cancer is the most prevalent form of age-related cancer, and 80 to 85 percent of all lung cancers are non-small cell," Ludlow said. "But there really aren't that many treatments for it."

According to the American Cancer Society, lung cancer causes the most cancer deaths among men and women, and is the second most common cancer, aside from skin cancer.

Before researchers can target NOVA1 or telomerase splicing as a serious potential therapy for non-small cell lung cancer, they must gain a much better understanding of how telomerase is regulated. This research is a step in that direction.

Ludlow's group is also looking at ways to directly impact splicing, in addition to reducing NOVA1.

Explore further: Blocking two enzymes could make cancer cells mortal

More information: Andrew T. Ludlow et al, NOVA1 regulates hTERT splicing and cell growth in non-small cell lung cancer, Nature Communications (2018). DOI: 10.1038/s41467-018-05582-x

Related Stories

Blocking two enzymes could make cancer cells mortal

May 17, 2018
EPFL scientists have identified two enzymes that protect chromosomes from oxidative damage and shortening. Blocking them might be a new anticancer strategy for stopping telomerase, the enzyme that immortalizes tumors.

Researchers identify new potential target for cancer therapy

April 19, 2013
Researchers at UT Southwestern Medical Center have found that alternative splicing – a process that allows a single gene to code for multiple proteins – appears to be a new potential target for anti-telomerase cancer ...

Researchers uncover new cancer cell vulnerability

July 18, 2014
(Medical Xpress)—Yale School of Medicine and Yale Cancer Center researchers have uncovered a genetic vulnerability of cancer cells that express telomerase—an enzyme that drives their unchecked growth—and showed that ...

Research reveals how cancer-driving enzyme works

May 6, 2011
Cancer researchers at UT Southwestern Medical Center are helping unlock the cellular-level function of the telomerase enzyme, which is linked to the disease's growth.

Researchers target the cell's 'biological clock' in promising new therapy to kill cancer cells

January 1, 2015
Cell biologists at UT Southwestern Medical Center have targeted telomeres with a small molecule called 6-thiodG that takes advantage of the cell's 'biological clock' to kill cancer cells and shrink tumor growth.

Recommended for you

Mutant cells colonize our tissues over our lifetime

October 18, 2018
By the time we reach middle age, more than half of the oesophagus in healthy people has been taken over by cells carrying mutations in cancer genes, scientists have uncovered. By studying normal oesophagus tissue, scientists ...

Study involving hundreds of patient samples may reveal new treatment options of leukemia

October 17, 2018
After more than five years and 672 patient samples, an OHSU research team has published the largest cancer dataset of its kind for a form of leukemia. The study, "Functional Genomic Landscape of Acute Myeloid Leukemia", published ...

A 150-year-old drug might improve radiation therapy for cancer

October 17, 2018
A drug first identified 150 years ago and used as a smooth-muscle relaxant might make tumors more sensitive to radiation therapy, according to a recent study led by researchers at The Ohio State University Comprehensive Cancer ...

Loss of protein p53 helps cancer cells multiply in 'unfavourable' conditions

October 17, 2018
Researchers have discovered a novel consequence of loss of the tumour protein p53 that promotes cancer development, according to new findings in eLife.

New method uses just a drop of blood to monitor lung cancer treatment

October 17, 2018
Dr. Tasuku Honjo won the 2018 Nobel Prize in physiology or medicine for discovering the immune T-cell protein PD-1. This discovery led to a set of anti-cancer medications called checkpoint inhibitors, one of the first of ...

Researcher fighting breast cancer with light therapy

October 17, 2018
When treatment is working for a patient who is fighting cancer, the light at the end of the tunnel is easier to see.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.