Reducing NOVA1 gene helps prevent tumor growth in most common type of lung cancer

August 6, 2018, University of Michigan
Lung CA seen on CXR. Credit: James Heilman, MD/Wikipedia

Researchers have identified a gene that when inhibited or reduced, in turn, reduced or prevented human non-small cell lung cancer tumors from growing.

When mice were injected with non-small cell that contained the gene NOVA1, three of four mice formed tumors. When the mice were injected with without NOVA1, three of four mice remained tumor-free.

The fourth developed a tumor, but it was very small compared to the mice with the NOVA1 tumor cells, said Andrew Ludlow, first author on the study and assistant professor at the University of Michigan School of Kinesiology.

The research appears online today in Nature Communications. Ludlow did the work while a postdoctoral fellow at the University of Texas Southwestern Medical Center, in the shared lab of Woodring Wright, professor of cell biology and internal medicine, and Jerry Shay, professor of cell biology.

The study found that in cancer cells, the NOVA1 gene is thought to activate telomerase, the enzyme that maintains telomeres—the protective caps on the ends of chromosomes that preserve genetic information during cell division (think of the plastic aglets that prevent shoelace ends from fraying).

Telomerase isn't active in healthy adult tissues, so telomeres degrade and shorten as we age. When they get too short, the body knows to remove those damaged or dead cells.

In most cancers, telomerase is reactivated and telomeres are maintained, thus preserving the genetic material, and these are the cells that mutate and become immortal.

Telomerase is present in most cancer types, and it's an attractive therapeutic target for cancer. However, scientists haven't had much luck inhibiting telomerase activity in cancer, Ludlow said.

Ludlow's group wanted to try a new approach, so they screened cancer cell lines for splicing genes ( that modify RNA) that might regulate telomerase in cancer, and identified NOVA1.

They found that reducing the NOVA1 gene reduced , which led to shorter telomeres, and couldn't survive and divide.

Researchers only looked at non-small cell lung cancers, and NOVA1 was present in about 70 percent of them.

"Non-small cell lung cancer is the most prevalent form of age-related cancer, and 80 to 85 percent of all lung cancers are non-small cell," Ludlow said. "But there really aren't that many treatments for it."

According to the American Cancer Society, lung cancer causes the most cancer deaths among men and women, and is the second most common cancer, aside from skin cancer.

Before researchers can target NOVA1 or telomerase splicing as a serious potential therapy for non-small cell lung cancer, they must gain a much better understanding of how telomerase is regulated. This research is a step in that direction.

Ludlow's group is also looking at ways to directly impact splicing, in addition to reducing NOVA1.

Explore further: Blocking two enzymes could make cancer cells mortal

More information: Andrew T. Ludlow et al, NOVA1 regulates hTERT splicing and cell growth in non-small cell lung cancer, Nature Communications (2018). DOI: 10.1038/s41467-018-05582-x

Related Stories

Blocking two enzymes could make cancer cells mortal

May 17, 2018
EPFL scientists have identified two enzymes that protect chromosomes from oxidative damage and shortening. Blocking them might be a new anticancer strategy for stopping telomerase, the enzyme that immortalizes tumors.

Researchers identify new potential target for cancer therapy

April 19, 2013
Researchers at UT Southwestern Medical Center have found that alternative splicing – a process that allows a single gene to code for multiple proteins – appears to be a new potential target for anti-telomerase cancer ...

Researchers uncover new cancer cell vulnerability

July 18, 2014
(Medical Xpress)—Yale School of Medicine and Yale Cancer Center researchers have uncovered a genetic vulnerability of cancer cells that express telomerase—an enzyme that drives their unchecked growth—and showed that ...

Research reveals how cancer-driving enzyme works

May 6, 2011
Cancer researchers at UT Southwestern Medical Center are helping unlock the cellular-level function of the telomerase enzyme, which is linked to the disease's growth.

Researchers target the cell's 'biological clock' in promising new therapy to kill cancer cells

January 1, 2015
Cell biologists at UT Southwestern Medical Center have targeted telomeres with a small molecule called 6-thiodG that takes advantage of the cell's 'biological clock' to kill cancer cells and shrink tumor growth.

Recommended for you

Scientists discover new method of diagnosing cancer with malaria protein

August 17, 2018
In a spectacular new study, researchers from the University of Copenhagen have discovered a method of diagnosing a broad range of cancers at their early stages by utilising a particular malaria protein that sticks to cancer ...

Developing an on-off switch for breast cancer treatment

August 17, 2018
T-cells play an important role in the body's immune system, and one of their tasks is to find and destroy infection. However, T-cells struggle to identify solid, cancerous tumors in the body. A current cancer therapy is using ...

Pregnant? Eating broccoli sprouts may reduce child's chances of breast cancer later in life

August 16, 2018
Researchers at the University of Alabama at Birmingham have found that a plant-based diet is more effective in preventing breast cancer later in life for the child if the mother consumed broccoli while pregnant. The 2018 ...

Three scientists share $500,000 prize for work on cancer therapy

August 15, 2018
Tumors once considered untreatable have disappeared and people previously given months to live are surviving for decades thanks to new therapies emerging from the work of three scientists chosen to receive a $500,000 medical ...

PARP inhibitor improves progression-free survival in patients with advanced breast cancers

August 15, 2018
In a randomized, Phase III trial led by researchers at The University of Texas MD Anderson Cancer Center, the PARP inhibitor talazoparib extended progression-free survival (PFS) and improved quality-of-life measures over ...

New clues into how 'trash bag of the cell' traps and seals off waste

August 15, 2018
The mechanics behind how an important process within the cell traps material before recycling it has puzzled scientists for years. But Penn State researchers have gained new insight into how this process seals off waste, ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

Anonym556169
not rated yet Aug 07, 2018
I have had ASTHMA my whole life but about 7 years ago my asthma got so bad and was diagnosed of EMPHYSEMA/COPD which was most likely due to the asthma. I was on double antibiotics and steroids, still didn't feel any better. My lungs were constantly wheezing in all four chambers, i already used Advair, Spiriva, and Albuterol in my nebulizer, they just didn't do much. It was hell for me due to the severe difficulty breathing. My sister in-law told us about Rich Herbs Foundation where she ordered herbs that effectively treated her arthritis. We ordered their COPD TREATMENT after reading alot of positive reviews from other patients, i am happy to report the COPD TREATMENT was very effective for my lungs condition, every one of my symptoms including difficulty breathing, respiratory infections, chronic cough and wheezing has simply stopped. Visit w w w. richherbsfoundation. c o m. I will be 52 soon and have never been healthier

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.