PSD as a molecular platform for understanding synapse formation and plasticity

August 10, 2018, Hong Kong University of Science and Technology
PSD scaffold components self-assemble through liquid-liquid phase separation and the reconstituted PSD condensates recruit glutamate receptors, enrich synaptic enzymes and repel inhibitory protein. Credit: HKUST

Synapses, the structures that allow neurons to pass signals to one another, are essential to neuronal function. Proper formation and responses to stimulation of synapses both during development and in adulthood are fundamental to mammalian brains, but the molecular processes governing formation and modulation of compartmentalized synaptic assemblies are unclear.

In a recent study, a group of scientists from the Hong Kong University of Science and Technology (HKUST) employed a biochemical reconstitution approach to show that, both in solution and on supported membrane bilayers, multivalent interaction networks formed by major excitatory postsynaptic density (PSD) scaffold proteins led to formation of PSD-like assemblies via phase separation. The reconstituted PSD-like assemblies can cluster receptors, selectively concentrate enzymes, promote actin bundle formation, and expel inhibitory postsynaptic proteins.

The findings were published in the journal Cell on Aug 2, 2018.

Synapses, the most basic units for a neural circuit to form, do not behave in a static and linear way, as connection nodes in computer circuits do. As they are extremely dynamic both within each synapse at a short time scale and at the entire circuit level at a very long time range, understanding synapse formation and its dynamic regulation is essential to investigate how a specific neural circuit generates certain physiological functions.

"The condensed phase PSD assemblies have features that are distinct from those in homogeneous solutions and fit for synaptic functions," said Professor Mingjie Zhang, lead researcher of the group. "In our study, we have built a molecular platform for understanding how neuronal synapses are formed and dynamically regulated."

Reconstituted PSD condensates on lipid bilayers cluster glutamate receptor tails and promote actin bundle formation. Credit: HKUST
"We attempted to understand how highly condensed PSD protein assemblies not enclosed by membranes can autonomously form and stably exist," said Dr. Menglong Zeng, a co-author of the paper. "Such assembled PSD condensates dynamically exchange their constitutes in response to synaptic stimuli."

"In this study, via a biochemical reconstitution approach using purified proteins, we have demonstrated these four major scaffold proteins can, indeed, form PSD protein condensates at physiological concentrations," said Professor Zhang. "Our results indicate that the highly condensed PSD assemblies in living neurons might autonomously form and stably exist via LLPS. It provides a likely answer to the mechanism of synapse-based cellular compartmentalization of neurons, a striking morphology that is critical for the functions of neurons."

The reconstituted PSD condensates investigated in the study recapture several key functional features of the PSD in living neurons.

First, the PSD condensates can massively cluster glutamate receptors on supported membrane bilayers, and the clustered NMDAR tails still manage to exchange with the diffused receptor tails on the membrane bilayers. Second, the major scaffold proteins are the critical determinants in driving the PSD condensate formation. Such PSD condensates can then enrich their binding enzymes such as SynGAP and CaMKIIα. Third, the PSD condensates formed by the major scaffold proteins can enrich the actin regulatory and promote actin bundle formation.

"The information derived from such a reconstitution system, together with experiments performed in living neurons, offer valuable insights in understanding roles of these proteins in synaptic formation and functions," said Professor Zhang. "Although still vastly simplified, this well-defined biochemically traceable system provides a platform and a new paradigm for studying excitatory PSD formation and regulation as well as for elucidating mechanisms of a range of brain disorders caused by mutations of synaptic encoding genes in the future.

Explore further: One step closer to finding a cure for brain diseases

More information: Reconstituted Postsynaptic Density as a Molecular Platform for Understanding Synapse Formation and Plasticity, Cell (2018). DOI: 10.1016/j.cell.2018.06.047

Related Stories

One step closer to finding a cure for brain diseases

July 16, 2018
A research team led by Professor Jaewon Ko and Ji Won Um from Department of Brain and Cognitive Sciences identified a new principle of formation of brain synapses through synaptic binding protein complexes.

Key synapse formation regulator identified

August 22, 2017
Professor Ko Jae-won at Korea Advanced Institute of Science and Technology (KAIST) has conducted a study of the three-dimensional structure of proteins that regulate neuronal cell connections for the first time, and has identified ...

Research reveals how PSD forms and why defects can cause autism

August 25, 2016
All neurons in our brain are wired via a micron-sized connection unit called synapse, and each synapse contains a layer of densely-packed, protein rich compartment called postsynaptic density (PSD), which is responsible for ...

Visualization of newly formed synapses with unprecedented resolution

August 11, 2016
The formation of excitatory and inhibitory synapses between neurons during early development gives rise to the neuronal networks that enable sensory and cognitive functions in humans. Inhibitory synapses decrease the likelihood ...

Pre-synaptic cadherin/catenin complexes stablize post-synaptic spines in vivo

June 28, 2017
Synapses are fundamental building blocks of neural circuits. Synapse formation requires complex regulation involving cell adhesion molecules, secreted molecules, transcription factors and so forth. For cell adhesion molecules, ...

Protein family linked to autism suppresses the development of inhibitory synapses

January 28, 2013
Synapse development is promoted by a variety of cell adhesion molecules that connect neurons and organize synaptic proteins. Many of these adhesion molecules are linked to neurodevelopmental disorders; mutations in neuroligin ...

Recommended for you

How does brain structure influence performance on language tasks?

October 17, 2018
The architecture of each person's brain is unique, and differences may influence how quickly people can complete various cognitive tasks.

Regulating microglial activity may reduce inflammation in neurodegenerative diseases

October 17, 2018
A group of Massachusetts General Hospital (MGH) investigators is proposing that targeting immune checkpoints—molecules that regulate the activity of the immune system—in immune cells called microglia could reduce the ...

New imaging tool captures how sound moves through the chinchilla ear

October 17, 2018
Researchers have developed a new device that can be used to visualize how sound-induced vibrations travel through the ear. The technology is providing new insight into how the ear receives and processes sound waves and, with ...

Sensory perception is not a one-way street

October 17, 2018
When we interact with the world, such as when we reach out to touch an object, the brain actively changes incoming sensory signals based on anticipation. This so-called 'sensory gating' has now been investigated by neuroscientists ...

Environmental factors may trigger onset of multiple sclerosis

October 16, 2018
A new Tel Aviv University study finds that certain environmental conditions may precipitate structural changes that take place in myelin sheaths in the onset of multiple sclerosis (MS). Myelin sheaths are the "insulating ...

Study points to possible new therapy for hearing loss

October 15, 2018
Researchers have taken an important step toward what may become a new approach to restore hearing loss. In a new study, out today in the European Journal of Neuroscience, scientists have been able to regrow the sensory hair ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.