Random fraction of specialized immune cells leads the charge in battling invaders

August 29, 2018, Eindhoven University of Technology
Random fraction of specialized immune cells leads the charge in battling invaders
Single-cell analysis reveals that stochasticity and paracrine signaling control interferon-alpha production by plasmacytoid dendritic cells. Credit: Eindhoven University of Technology

Plasmacytoid dendritic cells (pDCs) are a rare type of immune cells that secrete large quantities of type 1 interferon (I-IFN), a key driver of immunity to infectious invaders and cancer. However, the mechanisms that control the I-IFN secretion are still poorly understood. Researchers from Eindhoven University of Technology and Radboud University Nijmegen have developed a groundbreaking, high-throughput lab device to speed up the research. Remarkably, they discovered that only a very small fraction of single pDCs produce I-IFN and is responsible for the onset of immunity. The results are published in Nature Communications this week.

The research was led by assistant professor of Biomedical Engineering Jurjen Tel, who leads the group in Immunoengineering at the Eindhoven University of Technology, in collaboration with professor Carl Figdor (Tumor Immunology) and professor Wilhelm Huck (Physical Organic Chemistry), both from the Radboud University Nijmegen.

Plasmacytoid dendritic cells (pDCs)

Dendritic cells are specialized in the body that help the immune system to recognize and fight off intruders and . They break down infected or cancer cells into smaller pieces (antigens), which are then brought to the cell surface so that other immune cells, the killer T cells, can see them. Killer T cells then start an immune reaction against any cell in the body that contains these antigens. Plasmacytoid dendritic cells (pDCs) have gained attention because of their capability to fight cancer via the secretion of a special protein called type 1 interferon (I-IFN). Several pDC subclasses have been characterized by understanding heterogeneity in their transcriptomic profile and molecular outfit. Whether these individual differences may have an impact on each pDC's ability to produce I-IFN remained, to date, unanswered.

Randomness

Tel and colleagues now demonstrate that I-IFN production by human pDCs is regulated by stochastic gene expression or, in other words, by randomness. Remarkably, when stimulating thousands of cells individually, only a very small fraction (< 1%) of pDCs was shown to produce I-IFN. Furthermore, this study also demonstrates that single pDCs can boost their own activity and generate population-driven I-IFN responses, in a feed-forward amplification loop.

Droplet nanoreactors

The team guided by Tel has developed a microfluidic platform which enables the study of human pDCs and the I-IFN response on a single cell level. In order to do so, this platform generates thousands of identical droplets which can be considered as miniaturized nanolabs, each of them containing a single cell. These droplet nanoreactors allow for the study of cell-to-cell variations and, importantly, the execution of massively parallelized single cell experiments. An achievement which represents a real technological breakthrough in the field of droplet-based microfluidics. Attempts were made in the same direction by other researchers, but was impeded due to complex detection equipment, rarity of cells or difficult handling conditions.

New implications for immunotherapy

The results described in the work of Tel and colleagues have far-reaching implications. In case of pDC-based anti-cancer vaccines, certain parameters should be reconsidered, one for all the number of injected cells, in order to improve efficacy. In addition, therapeutic approaches that target pDCs inside the body should consider that not all pDCs are the same, and that pDCs might react differently to treatment depending on the tissue microenvironment.

Tel recently obtained an ERC starting grant (1.8 Million euro) to, together with his single cell technology platform and the Immunoengineering group, dissect complex immunological responses and provide new insight into the role of pDCs in health and disease.

Explore further: New study finds hope in understanding and better treating scleroderma

More information: Florian Wimmers et al. Single-cell analysis reveals that stochasticity and paracrine signaling control interferon-alpha production by plasmacytoid dendritic cells, Nature Communications (2018). DOI: 10.1038/s41467-018-05784-3

Related Stories

New study finds hope in understanding and better treating scleroderma

January 10, 2018
Scleroderma is a terribly debilitating disease with no effective treatments and the mortality rates are still upwards of 20%-50%, the highest of any rheumatic disease.

Antibody targets and destroys cells implicated in systemic lupus erythmatosis

May 5, 2016
Systemic lupus erythematosus (SLE) is a chronic autoimmune disease that affects multiple organ systems. Autoantibodies, which are produced by B cells, contribute to development of SLE. Recent studies have also shown that ...

Mechanism for more efficient cancer treatment decoded

January 19, 2012
(Medical Xpress) -- A research team from the Institute for Cancer Research at the MedUni Vienna has decoded a previously unknown mechanism of the active ingredient imiquimod in tumour defence. They have been able to prove ...

Study shows how immune cells rally defenses against infection while keeping harmful inflammatory reactions in check

May 11, 2012
T cells represent a significant component of the ‘muscle’ in the immune system, promoting aggressive action against perceived threats or restraining fellow immune cells from launching an unhealthy autoimmune response ...

Researchers answer long-standing question about lupus

December 7, 2015
For years, biomedical researchers have suspected that a specific set of immune cells are responsible for causing disease in lupus patients, but until now they haven't known for sure one way or the other.

The long arm of the dendritic cell: A link between atherosclerosis and autoimmunity

April 4, 2012
Patients with autoimmune diseases often show a predisposition to develop "hardening of the arteries" or atherosclerosis. LMU researchers have now uncovered a mechanism that establishes a causal link between the two disorders.

Recommended for you

Immunity connects gut bacteria and aging

November 13, 2018
Over the years, researchers have learned that the different populations of bacteria that inhabit the gut have significant effects on body functions, including the immune system. The populations of gut bacteria are sometimes ...

Pancreatic cancer's addiction could be its end

November 13, 2018
Cancer cells are often described as cells "gone bad" or "renegade." New research reveals that in some of the deadliest cases of pancreatic cancer, these rebellious cells have an unexpected addiction. Now, scientists are investigating ...

Probiotics increase bone volume in healthy mice

November 13, 2018
A widely-used probiotic stimulates bone formation in young female mice, according to a study published November 13th in the journal Immunity. In response to treatment with Lactobacillus rhamnosus GG (LGG), other intestinal ...

An enzyme in immune cells plays essential role in host defense against tuberculosis

November 13, 2018
Using freshly resected lung tissue from 21 patients and two distinct mouse models, tuberculosis researchers at the University of Alabama at Birmingham and the Africa Health Research Institute, or AHRI, have identified a protein ...

Study shows changes in histone methylation patterns in nutritionally stunted children

November 13, 2018
An international team of researchers has found changes in histone methylation patterns in nutritionally stunted children. In their paper published in Proceedings of the National Academy of Sciences, the group describes their ...

New clues to the origin and progression of multiple sclerosis

November 13, 2018
Mapping of a certain group of cells, known as oligodendrocytes, in the central nervous system of a mouse model of multiple sclerosis (MS), shows that they might have a significant role in the development of the disease. The ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.