Innovative technique converts white fat to brown fat

August 1, 2018, Columbia University School of Engineering and Applied Science
Innovative technique converts white fat to brown fat
Human white adipose tissue cultured in browning media for three weeks and stained with UCP1 (red), Lipidtox (green), and Sytox nuclear stain (blue). Credit: Brian Gillette/Columbia Engineering

Brown fat tissue in the body can burn enormous amounts of energy to generate heat, and studies in humans and animals have suggested that increasing the amount of healthy brown fat might help weight management and reduce symptoms of diabetes. However, how to safely and effectively increase brown fat has been a significant challenge for researchers.

A Columbia Engineering team led by Sam Sia, professor of biomedical engineering, has developed a simple, innovative method to directly convert white fat to brown fat outside the body and then reimplant it in a patient. The technique uses fat-grafting procedures commonly performed by plastic surgeons, in which fat is harvested from under the skin and then retransplanted into the same patient for cosmetic or reconstructive purposes. The researchers report in a Scientific Reports study (May 21) that they successfully converted harvested white fat to brown fat in the lab for potential use as a therapy.

Other methods to increase brown fat include chronic cold exposure, which is uncomfortable for most people, and pharmaceuticals that can cause side effects by targeting other organs. "Our approach to increasing brown fat is potentially safer than drugs because the only thing going into patients is their own tissue, and it's highly controllable because we can tune the amount of brown fat we inject," says Sia. "The process is also so simple that it could be potentially performed using an automated system within a doctor's office or clinic."

The team converted white fat to brown fat by culturing tissue fragments in media containing growth factors and other endogenous browning factors for one to three weeks to stimulate the "browning" process. They assessed the browning of the white fat by measuring levels of several brown fat biomarkers, including mitochondrial activity and the brown fat protein marker UCP1. In one of the study's experiments, they discovered that subcutaneous white fat in mice could be directly converted to brown fat outside the body, and that the brown fat both survived and remained stable after injection into the same mouse for a long period (two months in this experiment).

Video of confocal z-stack imaging of human white adipose tissue cultured in browning media for seven days and stained with UCP1 (red), Lipidtox (green), and Sytox nuclear stain (blue). Credit: Brian Gillette/Columbia Engineering
"The persistence of the converted brown fat is very important because we know that when white fat is naturally stimulated to turn to brown fat in vivo, through cold exposure for example, it can rapidly change back when the stimulation is removed," says Brian Gillette, the study's co-author and a Columbia-trained biomedical engineer now working in the department of surgery at NYU Winthrop Hospital. "Even though we could repeat the procedure several times if we needed to, since it's minimally invasive, it is critical that the brown fat survives well and remains stable so that it can function as an effective therapy."

The researchers then used their methods on human subcutaneous fat and were able to effectively convert it to brown fat. "This suggests that it might be possible one day to attempt our approach in humans as a potential therapy to help with weight loss, control of blood glucose levels, or to prevent weight gain," says Nicole Blumenfeld, a Ph.D. student working with Sia and lead author of the paper.

The researchers note that, while the mice on a treated with directly converted brown fat in the experiment did not show statistically significant weight loss versus a control group treated with unconverted , the study demonstrates a simple and scalable tissue-grafting strategy that increases endogenous .

"This is an exciting advance toward engineered brown adipose tissue in clinical applications if it is proven to be safe and effective in humans," says Li Qiang, assistant professor in pathology and cell biology at Columbia University Medical Center who was not involved with this study. An expert in the pathophysiology of diabetes and obesity, Qiang documented the mechanism that promotes the "browning" of white adipose tissue.

The researchers are now refining their techniques and dosages and running further studies on the impact of their methods on metabolism and weight regulation. "There is a clear need to explore new weight-loss approaches with the potential for low rates of complications and long-term efficacy," Sia adds. "The ability to culture large quantities of tissue at once while retaining its 3-D vascular structure is advantageous and holds promise as a potential approach in clinical weight management."

Explore further: Researchers report protein kinase as the switch controlling obesity and diabetes

More information: Nicole R. Blumenfeld et al, A direct tissue-grafting approach to increasing endogenous brown fat, Scientific Reports (2018). DOI: 10.1038/s41598-018-25866-y

Related Stories

Researchers report protein kinase as the switch controlling obesity and diabetes

July 18, 2018
One of the research lines targeting the worldwide obesity epidemic is the manipulation of brown adipose tissue, a 'good' type of fat that burns lipids to maintain an appropriate body temperature. Researchers at the Centro ...

Turning on blood flow turns on fat-burning brown fat in mice

March 2, 2016
Increasing the blood flow in brown fat causes it to burn more calories in mice and may help treat obesity, a new study in the Journal of Applied Physiology reports.

Bid to beat obesity focuses on fat that keeps us warm

May 24, 2018
A new technique to study fat stores in the body could aid efforts to find treatments to tackle obesity.

Making metabolically active brown fat from white fat-derived stem cells

March 3, 2017
Researchers have demonstrated the potential to engineer brown adipose tissue, which has therapeutic promise to treat metabolic diseases such as obesity and type 2 diabetes, from white adipose-derived stem cells (ASCs). The ...

A specific protein regulates the burning of body fat to generate heat

October 11, 2017
Scientists at the Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC) have identified a protein that holds promise as a target for therapies to reduce obesity. Drs. Guadalupe Sabio and Nuria Matesanz have ...

Mechanism that converts white fat to brown identified

January 8, 2018
An international team of researchers led from Karolinska Institutet have, in experiments on mice, pinpointed a mechanism for the conversion of energy-storing white fat into energy-expending brown fat. The study is published ...

Recommended for you

Study examines disruption of circadian rhythm as risk factor for diseases

December 11, 2018
USC scientists report that a novel time-keeping mechanism within liver cells that helps sustain key organ tasks can contribute to diseases when its natural rhythm is disrupted.

New light-based technology reveals how cells communicate in human disease

December 11, 2018
Scientists at the University of York have developed a new technique that uses light to understand how cells communicate in human disease.

Researchers explore new way of killing malaria in the liver

December 8, 2018
In the ongoing hunt for more effective weapons against malaria, international researchers said Thursday they are exploring a pathway that has until now been little studied—killing parasites in the liver, before the illness ...

Study may offer doctors a more effective way to treat neuroblastoma

December 7, 2018
A very large team of researchers, mostly from multiple institutions across Germany, has found what might be a better way to treat patients with neuroblastoma, a type of cancer. In their paper published in the journal Science, ...

Progress made in transplanting pig hearts into baboons

December 6, 2018
A large team of researchers from several institutions in Germany, Sweden, Switzerland and the U.S. has transplanted pig hearts into baboons and kept them alive for an extended period of time. In their paper published in the ...

'Chemo brain' caused by malfunction in three types of brain cells, study finds

December 6, 2018
More than half of cancer survivors suffer from cognitive impairment from chemotherapy that lingers for months or years after the cancer is gone. In a new study explaining the cellular mechanisms behind this condition, scientists ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.