New high-throughput screening study may open up for future Parkinson's disease therapy

September 11, 2018, Aarhus University
New screening strategy gives rise to identification of novel inhibitors of α-synuclein aggregation, which may help develop a cure for Parkinson's disease. Here is a graphical overview of the screening of 746,000 compounds for the inhibitory effects. Credit: Daniel Otzen

Parkinson's disease (PD) is the most common movement disorder in the world. PD patients suffer from shaking, rigidity, slowness of movement and difficulty with walking. It is a neurodegenerative disease caused by the loss of dopaminergic neurons in the brain. Currently, PD cannot be cured or even halted, but symptoms may be treated to some degree. Probably the single most important cause of PD is the aggregation of the natively unfolded protein α-synuclein (αSN). αSN can form both small oligomeric complexes (αSOs) as well as large fibrillary deposits; the αSOs are thought to be the most toxic species. Preventing or reducing αSN aggregation could be a good way to halt PD development. So far, it has been difficult screen large numbers of compounds to identify potential aggregation inhibitors, since αSN aggregates in a rather irregular and variable fashion; it is also difficult to detect early-stage αSOs.

However, in the new screening strategy, the researchers first developed a smart trick to make αSN aggregate in a more predictable way using the "soap" molecule sodium dodecyl sulfate. To detect the aggregates, they used Förster resonance energy transfer (FRET), a widely used technique for measuring distances within and between molecules. In this way, they were able to screen 746,000 compounds for their ability to inhibit αSN aggregation.

By sifting through the results, they came up with a collection of novel, structurally diverse small compounds that either prevent or accelerate αSN aggregation. The six best inhibitors share a common core structure, and these compounds all interact with the first part of αSN, called the N-terminal region.

The results are exciting in two ways. First, the identified inhibitory molecules could be useful starting points to develop therapy against PD. Second, the compounds can also be used to find out more about how αSN in the cell affects PD development and thus understand more about the molecular basis for PD. 

Explore further: Researchers discover system that could reduce neurodegeneration in Huntington's disease

More information: Martin Kurnik et al, Potent α-Synuclein Aggregation Inhibitors, Identified by High-Throughput Screening, Mainly Target the Monomeric State, Cell Chemical Biology (2018). DOI: 10.1016/j.chembiol.2018.08.005

Related Stories

Researchers discover system that could reduce neurodegeneration in Huntington's disease

July 27, 2018
Neuroscientist Dr. David Vilchez and his team at CECAD, the University of Cologne's Cluster of Excellence for Aging Research, have made an important step toward understanding the mechanisms that cause the neurodegenerative ...

LDL quality is a novel, modifiable cardiovascular risk marker

July 12, 2018
A recently published article in the European Heart Journal shows that the presence of sticky, aggregation-prone LDL in circulation is an independent predictor of cardiovascular death. This novel finding indicates that in ...

Novel regulator inhibits toxic protein aggregates in Huntington's disease

April 23, 2015
Huntington's disease is a neurodegenerative disorder characterized by huntingtin protein aggregates in a patient's brain, but how these aggregates form is not well understood. In a study published online today in Genome Research, ...

ALS protein dynamics highlight delicate balance between self-association and aggregation

January 6, 2016
The ALS-related protein TDP-43 takes the first steps toward pathologic aggregation as part of its normal function, according to a new study publishing in the Open Access journal PLOS Biology on Jan. 6, 2016. The study, by ...

Recommended for you

Gene therapy shown to remove core component of Parkinson's disease

September 14, 2018
An international team led by Rush researcher Jeffrey Kordower, Ph.D., has moved a step closer to developing a treatment to clear brain cells of a protein that is an integral cause of Parkinson's disease. The team published ...

ADHD may increase risk of Parkinson's disease and similar disorders

September 12, 2018
While about 11 percent of children (4-17 years old) nationwide have been diagnosed with attention-deficit hyperactivity disorder (ADHD), the long-term health effects of having ADHD and of common ADHD medications remains understudied. ...

New high-throughput screening study may open up for future Parkinson's disease therapy

September 11, 2018
Parkinson's disease (PD) is the most common movement disorder in the world. PD patients suffer from shaking, rigidity, slowness of movement and difficulty with walking. It is a neurodegenerative disease caused by the loss ...

Marmosets serve as an effective model for non-motor symptoms of Parkinson's disease

September 5, 2018
Small, New World monkeys called marmosets can mimic the sleep disturbances, changes in circadian rhythm, and cognitive impairment people with Parkinson's disease develop, according to a new study by scientists at Texas Biomedical ...

Novel brain network linked to chronic pain in Parkinson's disease

August 28, 2018
Scientists have revealed a novel brain network that links pain in Parkinson's disease (PD) to a specific region of the brain, according to a report in the journal eLife.

Sensor array may detect de novo Parkinson's disease in breath

August 27, 2018
(HealthDay)—A sensor array has the potential to identify de novo Parkinson's disease (PD) patients with high sensitivity, specificity, and accuracy values, according to a research letter published online July 10 in ACS ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.