Synthetic DNA vaccine effective against influenza A virus subtype

September 6, 2018, The Wistar Institute
Transmission electron micrograph of influenza A virus, late passage. Credit: CDC

Currently available vaccines for the prevention of seasonal influenza virus infection have limited ability to induce immunity against diverse H3N2 viruses, an influenza A subtype that has led to high morbidity and mortality in recent years.

Now, Wistar scientists have engineered a synthetic DNA shown to produce broad immune responses against these H3N2 viruses. Study results were published online in the journal Human Gene Therapy.

The recent severe influenza seasons in 2013/2014, 2014/2015 and 2017/2018 can be directly attributed to H3N2. Commercial vaccine efficacy against H3N2 in 2017/2018 was low and contributed to a greater rate of pneumonia and influenza-associated deaths.

"Current vaccine design and manufacturing to meet the antigenic diversity of H3N2 viruses is challenging, and with another flu season approaching there remains a pressing need for new vaccine approaches for influenza," said lead researcher David B. Weiner, Ph.D., executive vice president and director of the Vaccine & Immunotherapy Center at The Wistar Institute, and W.W. Smith Charitable Trust Professor in Cancer Research. "There is also a need for improvements in rapid selection and deployment against newly emergent viral strains and synthetic DNA vaccines represent an important tool to reach this goal."

To overcome the antigenic diversity of H3N2 viruses, Weiner and colleagues used H3N2 strains from 1968 to the present retrieved from the Influenza Research Database to generate four synthetic common sequences of the hemagglutinin antigen (HA), a protein present on the viral surface. These micro-consensus sequences were used to generate four DNA vaccines that were co-mixed to create a cocktail vaccine labeled pH3HA. The scientists administered the vaccine or placebo to mice and a booster vaccine two weeks later. Two weeks after the booster injection, they inoculated them with two representative influenza viruses.

Sarah Elliot, Ph.D., a senior postdoctoral fellow in the Weiner Lab, and colleagues monitored clinical signs, body weight and survival for two weeks after infection. All mice immunized with the synthetic DNA vaccine developed broad, robust antibody responses against HA and effective cellular immune responses including CD4 and CD8 T cell responses.

They were protected against lethal A infection from two different challenge H3N2 viruses. Vaccination with pH3HA induced robust antibodies against the 1968 pandemic H3N2 as well as contemporary H3N2 strains that were components of commercially available vaccines from 2015/2016 and 2017/2018.

Compared with those who received placebo, immunized mice survived intranasal challenge with 10 times the median lethal dose; the placebo group succumbed to infection within six days of exposure to the challenge virus.

"The pH3HA vaccine represents a unique micro-consensus approach to producing immune responses to antigenically related—yet diverse, A H3N2 viruses," Weiner said. "The overarching goals of this approach are to limit the number of vaccine reformulations that can be deployed to protect against novel H3N2 viruses."

Explore further: Influenza picking up in U.S., predominantly A(H3N2)

More information: Sarah Elliott et al, A Synthetic Micro-Consensus DNA Vaccine Generates Comprehensive Influenza-A H3N2 Immunity and Protects Mice Against Lethal Challenge by Multiple H3N2 Viruses, Human Gene Therapy (2018). DOI: 10.1089/hum.2018.102

Related Stories

Influenza picking up in U.S., predominantly A(H3N2)

December 8, 2017
(HealthDay)—Influenza activity was low during October 2017 but started increasing in November, with influenza A, predominantly A(H3N2), most commonly identified, according to research published in the Dec. 8 issue of the ...

Influenza A(H3N2) viruses predominate 2017-2018 season

February 16, 2018
(HealthDay)—Most influenza viruses identified in the 2017 to 2018 season are influenza A, with A(H3N2) viruses predominating, according to research published in the Feb. 16 issue of the U.S. Centers for Disease Control ...

H3N2 mutation in last year's flu vaccine responsible for lowered efficacy

November 6, 2017
The low efficacy of last year's influenza vaccine can be attributed to a mutation in the H3N2 strain of the virus, a new study reports. Due to the mutation, most people receiving the egg-grown vaccine did not have immunity ...

Team develops new broadly protective vaccines for H3N2 influenza

November 2, 2017
A collaborative research and development partnership between researchers at the University of Georgia and Sanofi Pasteur, the largest influenza vaccine manufacturer in the world, has resulted in the identification of a vaccine ...

Influenza-neutralizing antibodies generated in human subjects given experimental vaccine

July 7, 2016
Influenza A viruses are responsible for seasonal disease outbreaks in humans. Influenza A also circulates among bird and some mammal populations and periodically crosses between species. The influenza A H3N2 variant (H3N2v) ...

Tough flu season ahead: vaccine may only be 10% effective

December 6, 2017
(HealthDay)—There's bad news about this year's flu vaccine.

Recommended for you

Test could detect patients at risk from lethal fungal spores

September 20, 2018
Scientists at The University of Manchester have discovered a genetic mutation in humans linked to a 17-fold increase in the amount of dangerous fungal spores in the lungs.

Why some human genes are more popular with researchers than others

September 18, 2018
Historical bias is a key reason why biomedical researchers continue to study the same 10 percent of all human genes while ignoring many genes known to play roles in disease, according to a study publishing September 18 in ...

Class of neurological disorders share 3-D genome folding pattern, study finds

September 18, 2018
In a class of roughly 30 neurological disorders that includes ALS, Huntington's Disease and Fragile X Syndrome, the relevant mutant gene features sections of repeating base pair sequences known as short tandem repeats, or ...

Researchers resolve decades-old mystery about the most commonly mutated gene in cancer

September 18, 2018
The most commonly mutated gene in cancer has tantalized scientists for decades about the message of its mutations. Although mutations can occur at more than 1,100 sites within the TP53 gene, they arise with greatest frequency ...

Study of one million people leads to world's biggest advance in blood pressure genetics

September 17, 2018
Over 500 new gene regions that influence people's blood pressure have been discovered in the largest global genetic study of blood pressure to date, led by Queen Mary University of London and Imperial College London.

Genetic mutations thwart scientific efforts to fully predict our future

September 17, 2018
Ever since the decoding of the human genome in 2003, genetic research has been focused heavily on understanding genes so that they could be read like tea leaves to predict an individual's future and, perhaps, help them stave ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.