DNA sequencing and patient data used to halt infection outbreak

October 5, 2018, University of Oxford
DNA sequencing and patient data used to halt infection outbreak. Credit: Shutterstock

Clinical and research teams at Oxford University Hospitals (OUH) NHS Foundation Trust, using infection prevention and control best practice, whole genome sequencing and electronic patient data, have halted an outbreak of a potentially deadly fungal pathogen after detecting that multi-use patient equipment was responsible.

The breakthrough at the John Radcliffe Hospital is significant as this is the first time an outbreak of Candida auris (C. auris) has been completely ended with a clear understanding of the cause.

The study, published in the New England Journal of Medicine, was conducted by the Infection, Prevention and Control and Neurosciences Intensive Care Unit (ICU) teams from OUH, the University of Oxford's Nuffield Department of Medicine, the Big Data Institute and the NIHR Health Protection Research Unit and Public Health England, and supported by the NIHR Oxford Biomedical Research Centre.

The lead investigator, Dr. David Eyre, Research Fellow in Infectious Diseases at the Big Data Institute, said: "It is very pleasing that our research has led to the C. auris outbreak being stopped. There are a number of hospitals in the UK and around the world that have been unable to halt their outbreaks. Working out how it is transmitted should help to contain its spread worldwide.

"Such is the nature of this pathogen that we must remain vigilant, and we're delighted that, since we changed our approach as a result of our findings, we have had no further cases."

C. auris is an emerging, multi-drug resistant fungal pathogen recently associated with outbreaks worldwide, often in intensive care units. In some , C. auris can enter the bloodstream and spread throughout the body, causing serious infection.

The researchers investigated a large C. auris outbreak at the John Radcliffe Hospital's Neurosciences ICU between 2015 and 2017, during which 70 patients were identified as being colonised or infected with C. auris.

Using whole genome sequencing of patient and environmental isolates, combined with electronic health record data, they studied possible transmission routes, risk factors for colonisation and the molecular epidemiology of the outbreak.

Patients in Neurosciences ICU were regularly screened for C. auris, as were those on the adjacent Neurosciences ward. Samples were also taken from the environment, focusing on sampling high-touch areas and multi-use devices.

"We found that C. auris was rarely detected in the general environment; there was no trace of the organism on surfaces within the unit and only 1 out of 16 air samples was positive," Dr. Eyre explained.

"However, we did find C. auris on multi-use patient equipment, particularly temperature probes. There were close genetic matches between C. auris isolated from patients and from these thermometers. We found that having their temperature monitored with one of these probes was an important risk factor for acquiring C. auris. And unlike with pathogens like C. difficile, bed proximity did not appear to be a factor in transmission.

"So our research clearly showed that environmental survival appears to be key to Candida auris's persistence and transmission in healthcare settings. This led to us implementing successful infection control measures to contain the – including removing multi-use skin surface thermometers from use," he said.

Professor Derrick Crook, Director of National Infection Service at Public Health England and Antimicrobial Resistance Theme Lead at the NIHR Oxford Biomedical Research Centre, said: "This study will feed directly into healthcare guidelines regarding the use of multi-use equipment, and in particular the decontamination of this equipment in the event of future outbreaks.

"Although a relatively small number of patients in the Oxford study had clinically significant C. auris infections, such infections can have serious consequences for the kind of vulnerable patients admitted to intensive care units, particularly as C. auris is highly resistant to many anti-fungal agents. The action that was taken as a result of this research undoubtedly prevented more patients becoming colonised and infected."

Explore further: Large Candida auris outbreak linked to multi-use thermometers in UK ICU

More information: David W. Eyre et al. A Candida auris Outbreak and Its Control in an Intensive Care Setting, New England Journal of Medicine (2018). DOI: 10.1056/NEJMoa1714373

Related Stories

Large Candida auris outbreak linked to multi-use thermometers in UK ICU

April 21, 2018
Outbreaks of the fungal pathogen Candida auris (C. auris) in healthcare settings, particularly in intensive care units (ICUs), may be linked to multi-use patient equipment, such as thermometers, according to research presented ...

Why we should take fungal infections more seriously

October 1, 2018
When most healthy people think of fungal diseases, they often think of oral or vaginal thrush, nappy rash, fungal nail infections, and athlete's foot. Although these are very common, annoying and sometimes debilitating conditions, ...

Fungal disease spreads through UK hospitals – here's what you need to know about _Candida auris_

August 18, 2017
At least 20 NHS Trust hospitals have been hit by a drug-resistant fungus, Candida auris. So far, 200 people have been contaminated or infected with the fungus, which can cause potentially deadly complications.

First 13 cases of deadly fungal infection emerge in US

November 4, 2016
Thirteen cases of a sometimes deadly and often drug-resistant fungal infection, Candida auris, have been reported in the United States for the first time, health officials said Friday.

Fungus causing fatal infections in hospitalized patients has unique growth patterns

August 17, 2016
The multidrug-resistant yeast Candida auris, which has caused fatal infections in some hospitalized patients, has at least two different growth patterns and some of its strains are as capable of causing disease as the most ...

First systematic study of deadly, antibiotic-resistant fungus reported

February 24, 2017
The deadly fungus, Candida auris, which has been found in hospitals, is resistant to entire classes of antimicrobial drugs, limiting treatment options for those infected. First reported in 2009, the fungus has been linked ...

Recommended for you

Study identifies a key cellular mechanism that triggers pneumonia in humans

December 11, 2018
The relationship between influenza and pneumonia has long been observed by health workers. Its genetic and cellular mechanisms have now been investigated in depth by scientists in a study involving volunteers and conducted ...

Effect of oral alfacalcidol on clinical outcomes in patients without secondary hyperparathyroidism

December 11, 2018
Treatment with active vitamin D did not decrease cardiovascular events in kidney patients undergoing hemodialysis, according to a research group in Japan. They have reported their research results in the December 11 issue ...

Human antibody discovery could save lives from fungal killer

December 11, 2018
A new way to diagnose, treat and protect against stealth fungal infections that claim more than 1.5 million lives per year worldwide has been moved a step closer, according to research published in Nature Communications.

Dialysis patients at risk of progressive brain injury

December 10, 2018
Kidney dialysis can cause short-term 'cerebral stunning' and may be associated with progressive brain injury in those who receive the treatment for many years. For many patients with kidney failure awaiting a kidney transplant ...

Silicosis is on the rise, but is there a therapeutic target?

December 6, 2018
Researchers from the CNRS, the University of Orléans, and the company Artimmune, in collaboration with Turkish clinicians from Atatürk University, have identified a key mechanism of lung inflammation induced by silica exposure, ...

PET scans to optimize tuberculosis meningitis treatments and personalize care, study finds

December 6, 2018
Although relatively rare in the United States, and accounting for fewer than 5 percent of tuberculosis cases worldwide, TB of the brain—or tuberculosis meningitis (TBM)—is often deadly, always hard to treat, and a particular ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.