How some heart cells cope with high blood pressure

October 30, 2018, University of Tokyo
How some heart cells cope with high blood pressure
University of Tokyo researchers used human cells and mice to study the genetic differences between heart muscle cells that adapt and those that fail when subjected to high blood pressure. The research has potential future applications in treatment of cardiovascular disease. Credit: The University of Tokyo. No copyright restrictions.

Individual cells within the same heart cope differently with high blood pressure, according to a study in human cells and mice by a team of cardiologists and computational biologists at the University of Tokyo. This is the first time researchers have identified distinct differences between heart muscle cells that fail and those that adapt to high blood pressure.

Cardiovascular diseases are the number one cause of death worldwide, according to the World Health Organization. High blood pressure causes failure, but the underlying mechanism by which this occurs is unknown.

In this new study, cells that adapted to were thicker overall than healthy cells. These thicker cells needed more energy, but could keep the heart beating. Cells that failed to adapt became stretched out and weak, like a worn-out elastic band, and could contract to keep blood pumping.

Project Assistant Professor Seitaro Nomura, a cardiologist at the Graduate School of Medicine and a postdoctoral researcher at the Research Center for Advanced Science and Technology, is first author of the research paper.

"These results are the first to show that some cells fail and others adapt to high blood pressure within the same heart. I am very interested in the increased activity of that are important for making energy in the cell," said Nomura.

The scientists identified multiple groups of genes that had increased or decreased activity when cells coped with high pressure, but focused on one gene called p53. In failing cells, p53 showed increased activity. Researchers suspect p53 sends cells down a path either of failing or adapting to increased pressure. This gene is familiar to cancer researchers for responding to DNA damage and maintaining cell growth and division.

Nomura and other researchers examined the gene activity of hundreds of from a small number of mice and human heart surgery patients. Identifying the gene activity of single cells, rather than averaging the gene activity of many cells, is known as single-cell transcriptome analysis and can reveal differences between cells from the same individual.

Ongoing research in the University of Tokyo laboratories of Professor Hiroyuki Aburatani at the Research Center for Advanced Science and Technology and Professor Issei Komuro at the Graduate School of Medicine will continue to investigate the cellular signals that connect p53 to the paths of failing or adapting to high pressure.

"Scientists already know how to reprogram adult cells into induced pluripotent stem (iPS) cells," said Nomura, referring to the 2012 Nobel Prize-winning research that gives adult cells the ability to revert to an immature state. "This gives me confidence that eventually, we may find a way to reprogram failing heart cells into adaptive heart cells," said Nomura.

Cardiologists of the future may be able to coax to adapt to the high of hypertension, a narrow aorta, or heart attack and prevent heart failure.

"Combining computational analysis with experimental medical techniques can extend our knowledge and improve the laboratory bench-to-patients' bedside process of research," said Nomura.

The research paper is a peer-reviewed experimental study using human cell samples and male mice published in Nature Communications.

Explore further: Opposing roles for two enzymes in heart failure

More information: Seitaro Nomura et al, Cardiomyocyte gene programs encoding morphological and functional signatures in cardiac hypertrophy and failure, Nature Communications (2018). DOI: 10.1038/s41467-018-06639-7

Related Stories

Opposing roles for two enzymes in heart failure

October 10, 2018
Investigations in mice have identified molecular processes that could be explored as targets for treatment of heart failure with pulmonary hypertension.

New target for treating heart failure identified

June 11, 2018
Changes in cellular struts called microtubules (MT) can affect the stiffness of diseased human heart muscle cells, and reversing these modifications can lessen the stiffness and improve the beating strength of these cells ...

Some blood stem cells are better than others

May 30, 2018
In your body, blood stem cells produce approximately 10 billion new white blood cells, which are also known as immune cells, each and every day. Even more remarkably, if some of these blood stem cells fail to do their part, ...

Study examines altered gene expression in heart failure

August 4, 2017
Heart failure refers to a condition in which heart muscle becomes weakened over time, making it increasingly difficult for the heart to pump blood through the body like it should.

Heart disease symptoms improved by blocking immune cell migration

May 2, 2018
New research led by investigators at Case Western Reserve University School of Medicine and University Hospitals Cleveland Medical Center suggests that the location of immune cells in the body determines whether they help ...

Recommended for you

Bullying and violence at work increases the risk of cardiovascular disease

November 19, 2018
People who are bullied at work or experience violence at work are at higher risk of heart and brain blood vessel problems, including heart attacks and stroke, according to the largest prospective study to investigate the ...

Progress in genetic testing of embryos stokes fears of designer babies

November 16, 2018
Recent announcements by two biotechnology companies have stoked fears that designer babies could soon be an option for those who can afford to pick and choose which features they want for their offspring. The companies, MyOme ...

Gene editing possible for kidney disease

November 16, 2018
For the first time scientists have identified how to halt kidney disease in a life-limiting genetic condition, which may pave the way for personalised treatment in the future.

Genetic analysis links obesity with diabetes, coronary artery disease

November 16, 2018
A Cleveland Clinic genetic analysis has found that obesity itself, not just the adverse health effects associated with it, significantly increases the risk of Type 2 diabetes and coronary artery disease. The paper was published ...

DICE: Immune cell atlas goes live

November 15, 2018
Compare any two people's DNA and you will find millions of points where their genetic codes differ. Now, scientists at La Jolla Institute for Immunology (LJI) are sharing a trove of data that will be critical for deciphering ...

Non-coding genetic variant could improve key vascular functions

November 15, 2018
Atherosclerotic disease, the slow and silent hardening and narrowing of the arteries, is a leading cause of mortality worldwide. It is responsible for more than 15 million deaths each year, including an estimated 610,000 ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.