New target for treating heart failure identified

June 11, 2018, Perelman School of Medicine at the University of Pennsylvania
Credit: CC0 Public Domain

Changes in cellular struts called microtubules (MT) can affect the stiffness of diseased human heart muscle cells, and reversing these modifications can lessen the stiffness and improve the beating strength of these cells isolated from transplant patients with heart failure, found researchers from the Perelman School of Medicine at the University of Pennsylvania. This Nature Medicine new study is a continuation of research conducted two years ago on how MTs are involved in regulating the heartbeat. "These findings provide compelling evidence from human samples for a new therapeutic target for heart disease," said senior author Ben Prosser, Ph.D., an assistant professor of Physiology. The Penn investigators aim to develop therapies that seek out the damaged MTs to reverse their harmful influence.

By suppressing impaired MTs, the team improved muscle cell function in damaged human . Normally, MTs of the cell's inner support system have diverse structural and signaling roles. Alterations in this network have been suggested to contribute to heart disease. Recent studies suggest that chemical changes to the MTs, called detyrosination (the removal of a tyrosine chemical group), control the mechanics of heart beats. Detyrosinated MTs provide resistance that can impede the motion of contracting heart muscle cells.

The Penn team used mass spectrometry and mechanical tests of single heart muscle cells to characterize changes to the MT network and its consequences for normal heart function. Analysis of tissue from the left ventricle of heart transplant patients revealed a consistent upregulation of proteins that leads to the stiffening of MTs. Using super-resolution imaging, the team also saw a dense, heavily detyrosinated MT network in the diseased heart muscle cells, which is consistent with increased cell stiffness and decreased ability to contract. Proper cell elasticity and contraction is crucial for normal circulation throughout the body.

Microtubules (in blue) in beating human heart cells. On the left is a heart cell from a normal, non-failing (NF) donor, while on the right is a heart cell from a patient with heart failure (dilated cardiomyopathy, DCM). The greater density of buckling microtubules in the failing heart cells contributes to both slowed contraction and relaxation. Credit: Ben Prosser, Ph.D., Perelman School of Medicine, University of Pennsylvania

Using a drug, the team suppressed the detyrosinated MTs, which restored about half of lost contractile function in the diseased cells. Genetically reducing the MT detyrosination also softened the and improved their ability to contract.

Past clinical data from Penn showed a direct correlation between excess MT detyrosination and a decline in heart function among patients with hypertrophic cardiomyopathy, a condition in which thickened heart muscle can cause problems in maintaining proper blood pressure levels and flow of blood through the heart.

The team found that detyrosination was greater in diseased hearts by comparing human heart tissue donated from to normal heart tissue from other donors, obtained from work with transplant cardiologist and coauthor Ken Margulies, MD, a professor of Cardiovascular Medicine. Cells from diseased hearts have more MTs, and these MTs have more detyrosination. This process correlated with impaired function within this patient population in that their whole hearts, before the transplant, had a lower ejection fraction that correlated with greater detyrosination. Ejection fraction, an indicator of heart health, measures the amount of blood pumped out of ventricles with each contraction.

The team is now working on ways to target only heart cell MTs. They are refining gene therapy approaches with the Penn Gene Vector Core to deliver an enzyme to the heart that reverses detyrosination in .

Explore further: Mechanics of a heartbeat are controlled by molecular strut in heart muscle cells

More information: Suppression of detyrosinated microtubules improves cardiomyocyte function in human heart failure, Nature Medicine (2018). DOI: 10.1038/s41591-018-0046-2 , https://www.nature.com/articles/s41591-018-0046-2

Related Stories

Mechanics of a heartbeat are controlled by molecular strut in heart muscle cells

April 21, 2016
On top of the meaning and mystery that humans heap on the heart, it is first and foremost, a muscle. And one that beats about once a second for a person's entire life, with no rest. Given its vital importance, it's ironic ...

New study finds knocking out p63 gene as means of converting scar tissue into muscle tissue in the heart

April 17, 2018
Following a heart attack, the parts of the heart muscle that die do not regenerate into new heart tissue and instead are replaced by scar tissue. Using rodent models, researchers at Baylor College of Medicine are looking ...

Scientists reverse advanced heart failure in an animal model

October 4, 2017
Researchers have discovered a previously unrecognized healing capacity of the heart. In a mouse model, they were able to reverse severe heart failure by silencing the activity of Hippo, a signaling pathway that can prevent ...

Heart cells sense stiffness by measuring contraction forces and resting tension simultaneously

January 25, 2018
Researchers from Queen Mary University of London have identified a new mechanism in which adhesive structures within the cells of the heart sense stiffness through muscle contractions and resting tension at the same time.

Team finds that telomere length can have a direct correlation to heart failure in humans

September 7, 2017
Each cell in the average human body contains 23 pairs of chromosomes, with four telomeres on each pair. Telomeres cover the end of the chromosome, protecting it from deterioration or fusion with adjacent chromosomes, much ...

Cardiac stem cells from heart disease patients may be harmful

June 15, 2017
Patients with severe and end-stage heart failure have few treatment options available to them apart from transplants and "miraculous" stem cell therapy. But a new Tel Aviv University study finds that stem cell therapy may, ...

Recommended for you

Gout could increase heart disease risk

August 17, 2018
Having a type of inflammatory arthritis called gout may worsen heart-related outcomes for people being treated for coronary artery disease, according to new research.

As body mass index increases, blood pressure may as well

August 17, 2018
Body mass index is positively associated with blood pressure, according to the ongoing study of 1.7 million Chinese men and women being conducted by researchers at the Yale Center for Outcomes Research and Evaluation (CORE) ...

Stroke patients treated at a teaching hospital are less likely to be readmitted

August 17, 2018
Stroke patients appear to receive better care at teaching hospitals with less of a chance of landing back in a hospital during the early stages of recovery, according to new research from The University of Texas Health Science ...

Cardiovascular disease related to type 2 diabetes can be reduced significantly

August 16, 2018
Properly composed treatment and refraining from cigarette consumption can significantly reduce the risk of cardiovascular disease resulting from type 2 diabetes, according to a study published in the New England Journal of ...

Genomic autopsy can help solve unexplained cardiac death

August 15, 2018
Molecular autopsies can reveal genetic risk factors in young people who unexpectedly die, but proper interpretation of the results can be challenging, according to a recent study published in Circulation.

Neonatal pig hearts can heal from heart attack

August 15, 2018
While pigs still cannot fly, researchers have discovered that the hearts of newborn piglets do have one remarkable ability. They can almost completely heal themselves after experimental heart attacks.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.