Obese mice lose a third of their fat using a natural protein

October 29, 2018, Georgetown University Medical Center
Credit: CC0 Public Domain

To the great surprise of cancer researchers, a protein they investigated for its possible role in cancer turned out to be a powerful regulator of metabolism. The Georgetown University-led study found that forced expression of this protein in a laboratory strain of obese mice showed a remarkable reduction of their fat mass despite a genetic predisposition to eat all the time.

The study, published in Scientific Reports, suggests that the FGFBP3 (BP3 for short) might offer novel therapy to reverse disorders associated with , such as type 2 diabetes and .

Because BP3 is a natural protein and not an artificial drug, clinical trials of recombinant human BP3 could begin after a final round of preclinical studies, investigators say.

"We found that eight BP3 treatments over 18 days was enough to reduce the fat in by over a third," says the study's senior investigator, Anton Wellstein, MD, Ph.D., a professor of oncology and pharmacology at Georgetown Lombardi Comprehensive Cancer Center.

The treatments also reduced a number of obesity-related disorders in the mice, such as hyperglycemia—excess blood sugar that is often linked to diabetes—and eliminated the fat in their once fatty livers. Clinical as well as microscopic examination of the mice showed no side effects, researchers say.

Obesity, which affects more than 650 million people worldwide, is the major driver for metabolic syndromes, which includes disorders such as insulin resistance, glucose intolerance, hypertension and elevated lipids in the blood.

BP3 belongs to the family of fibroblast growth factor (FGF) binding proteins (BP). FGFs are found in organisms ranging from worms to humans and are involved in a wide range of biological processes, such as regulating cell growth, wound healing and response to injury. Some FGFs act like hormones.

BP1, 2, and 3 are "chaperone" proteins that latch on to FGF proteins and enhance their activities in the body. Wellstein has long researched the BP1 gene because its production is elevated in a range of cancers, suggesting that growth of some cancers is linked to the excess delivery of FGFs. Only recently has Wellstein turned his attention, and that of his lab and colleagues, to BP3 to understand its role.

The researchers found that this chaperone binds to three FGF proteins (19, 21, and 23) that are involved in the control of . FGF19 and FGF 21 signaling regulates the storage and use of carbohydrates (sugars) and lipids (fats). FGF23 controls phosphate metabolism.

"We found that BP3 exerts a striking contribution to metabolic control," Wellstein says. "When you have more BP3 chaperone available, FGF19 and FGF21 effect is increased through the increase of their signaling. That makes BP3 a strong driver of carbohydrate and lipid metabolism. It's like having a lot more taxis available in New York City to pick up all the people who need a ride."

"With metabolism revved up, sugar in the blood, and fat processed in the liver are used for energy and is not stored," Wellstein says. "And warehouses of fat are tapped as well. For example, the job of FGF21 is to control break down of fat, whether it is stored or just eaten."

While the study results are exciting, additional research is required before BP3 protein can be investigated as a human therapy for metabolic syndromes, he says.

Explore further: Some cancer therapies may provide a new way to treat high blood pressure

More information: Elena Tassi et al. Fibroblast Growth Factor Binding Protein 3 (FGFBP3) impacts carbohydrate and lipid metabolism, Scientific Reports (2018). DOI: 10.1038/s41598-018-34238-5

Related Stories

Some cancer therapies may provide a new way to treat high blood pressure

November 20, 2017
Drugs designed to halt cancer growth may offer a new way to control high blood pressure (hypertension), say Georgetown University Medical Center investigators. The finding could offer a real advance in hypertension treatment ...

Scientists block RNA silencing protein in liver to prevent obesity and diabetes in mice

September 10, 2018
Obesity and its related ailments like type 2 diabetes and fatty liver disease pose a major global health burden, but researchers report in Nature Communications that blocking an RNA-silencing protein in the livers of mice ...

Researchers uncover potential new role of long noncoding RNA in fatty liver disease

July 30, 2018
Scientists at the University of Michigan Life Sciences Institute have uncovered a potential new role for long noncoding RNA in obesity and nonalcoholic fatty liver disease—an accumulation of too much fat in the liver that ...

Study probes the role of key protein linked to heart disease, diabetes

March 23, 2018
Diet-induced diabetes, obesity, and heart disease are leading causes of death worldwide. In their search for novel therapies for these related chronic illnesses, Yale researchers investigated a protein called ANGPTL4. The ...

Secrets of longevity protein revealed in new study

January 17, 2018
Named after the Greek goddess who spun the thread of life, Klotho proteins play an important role in the regulation of longevity and metabolism. In a recent Yale-led study, researchers revealed the three-dimensional structure ...

Low protein diets may improve blood sugar regulation in obesity

August 22, 2016
Diets that are very high in protein are linked to an increased risk for developing type 2 diabetes, and high protein levels have been correlated to poor insulin regulation. However, few studies have investigated whether decreasing ...

Recommended for you

RNAi therapy mitigates preeclampsia symptoms

November 19, 2018
A collaboration of scientists from the University of Massachusetts Medical School, Beth Israel Deaconess Medical Center and Western Sydney University, have shown that an innovative new type of therapy using small interfering ...

Skeletal imitation reveals how bones grow atom-by-atom

November 19, 2018
Researchers from Chalmers University of Technology, Sweden, have discovered how our bones grow at an atomic level, showing how an unstructured mass orders itself into a perfectly arranged bone structure. The discovery offers ...

Signal peptides' novel role in glutamate receptor trafficking and neural synaptic activity

November 19, 2018
Glutamate is the major excitatory neurotransmitter in the brain, and the postsynaptic expression level of glutamate receptors is a critical factor in determining the efficiency of information transmission and the activity ...

A molecule for fighting muscular paralysis

November 19, 2018
Myotubular myopathy is a severe genetic disease that leads to muscle paralysis from birth and results in death before two years of age. Although no treatment currently exists, researchers from the University of Geneva (UNIGE), ...

New insights into how an ordinary stem cell becomes a powerful immune agent

November 19, 2018
How do individual developing cells choose and commit to their "identity"—to become, for example, an immune cell, or a muscle cell, or a neuron?

Mouse model aids study of immunomodulation

November 19, 2018
Because mice do not respond to immunomodulatory drugs (IMiDs), preclinical therapeutic and safety studies of the effects of IMiDs have not been possible in existing types of mice. This has led to an inability to accurately ...

2 comments

Adjust slider to filter visible comments by rank

Display comments: newest first

LaPortaMA
not rated yet Oct 29, 2018
Somebody's gonna die from this.
Little Susie
not rated yet Oct 30, 2018
Thank you for ALL your research efforts

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.