Recalling memories in context

October 25, 2018 by Thamarasee Jeewandara, Medical Xpress feature
Participants first encoded scene-object pairs, followed by retrieval or restudy of one of the 2 objects associated with each scene. Retrieval targets (cat) and restudy targets (clock) were contrasted to assess the testing effect, whereas retrieval nontargets (avocado) and restudy nontargets (tie) were contrasted to assess RIFA. In experiment 1, participants memorized each object either once or thrice. In experiment 2, practice memorization was performed thrice. Adapted from: PNAS, doi: 10.1073/pnas.1800006115

Information recall goes beyond memory access to powerfully allow long-term memory enhancement. Using human brain imaging, researchers in the UK and US have observed that an attempt to remember a specific event, accompanied the re-activation of additional information from the same event. In a recent study conducted by Tanya R. Jonker and co-workers at the Department of Psychology, memories of the past were shown to be organized as integrated events. The study showed that even the act of recalling a minor aspect of an event will engage brain networks with powerful effects, to retain information from the entire event. The outcomes of the study were published in the Proceedings of the National Academy of Sciences (PNAS).

Memory and recall are complex processes involving contextual and specific . Although the act of remembering can enhance long-term retention of the retrieved information, neural and cognitive mechanisms behind such memory enhancements are not yet understood. One possibility is that the process of remembering can reactivate a broader episodic context.

In the study, the researchers found that multiple attempts at enhanced long-term retention of the recovered object and a non-target object, in the shared scene context. Using functional magnetic resonance imaging (fMRI) data in a second experiment, the researchers found that memory retrieval resulted in greater neural reactivation of both target objects and contextually linked objects. Reactivation occurred in a network of medial and lateral parietal lobe regions linked to recollection of episodes. Retrieving memories enhanced information retention, linked broader context of the event in the hippocampus and in the posterior medial network of parietal cortical areas (termed the ). During memory retrieval, the regions played complementary roles to support reactivation of episodically linked information.

Human memory is assumed to form during encoding, and a retrieval process is useful to access the stored representation, previously detailed in retrieval-induced facilitation (RIFA). Although extensive research efforts are focused on memory retrieval; little is known about the driving mechanisms. Two main explanations assume that:

  1. Continuous experiences are segmented into discrete events and organized into memory. Retrieval of an item could reactivate the spatiotemporal event in which the item was encountered. The benefits of (testing effect) can spread to other items from the same context (RIFA). The retrieval practice may also reactivate representations in the hippocampus, binding the item and contextual information. Further retrieval can result in reactivating the lateral and medial parietal regions known as the posterior medial (PM) or default mode network.
  2. The second explanation assumes that participants encode item-to-item associations and retrieval of a single item could directly reactivate and strengthen features associated with the item.

The key difference between the two hypotheses is that in the episodic reactivation hypothesis, RIFA is driven by contextual information reactivation. Whereas during semantic hypothesis, RIFA is driven by reactivating semantic features of associated items. The behavioral evidence of RIFA was only observed in studies that used semantically organized materials.

At present, there is little evidence to suggest that the recovery of spatiotemporal context from a past event can enhance retention of the retrieved and contextually linked information from the same event. To address the question, the scientists conducted two experiments aiming to shed light on the cognitive and neural mechanisms underlying retrieval-based memory enhancement. The focus was on the recovery of target information and on contextually related, non-retrieved information.

In the study, experiment 1 established a method to investigate how retrieval of an object impacted later memory to retrieve a contextually linked object. In experiment 2, the researchers conducted fMRI and representational similarity analysis (RSA) to identify reactivation of target and non-target information during the retrieval process.

Method to analyze representation similarity. To assess reactivation, patterns of activity during retrieval or restudy were compared with patterns for the encoding trial in each of our regions of interest (ROI). Adapted from: PNAS, doi: 10.1073/pnas.1800006115

In the first experiment, participants were divided into two groups to understand how repeated retrieval affected episodic memory representation. One group performed retrieval or restudy on each target object once, a second group performed the practice thrice. A cued recall test administered the next day revealed that retention enhanced tested objects in the retrieval practice condition relative to the restudy condition for both groups. Retrieval-induced facilitation (RIFA) was, however, only present after three practice cycles, demonstrating that repeated retrieval played an important role in facilitating memory for nontarget information. The findings suggested that retrieval processes may qualitatively change across the course of repeated retrieval; this was explored in the second experiment.

In the second experiment, the researchers examined reactivation during retrieval to determine the type(s) of information that participants accessed during memory search. The findings focused on the hippocampus and on two cortical networks shown to play a key role in memory encoding and retrieval. The hippocampus was examined since single-unit recording studies in rats had shown the hippocampus replayed recent experiences during sleep and wakeful rest to stabilize new memories. Evidence suggested that retrieval may be analogous to replay due to target item retention. To examine reactivation in these networks in the brain, the researchers used RSA and fMRI data. They examined the degree of similarity between patterns of neural activity across different trials based on the assumption that cognitively similar events should result in similar neural pattern profiles. For instance, if the retrieval of an image of a kitten accompanied the contextually linked image of an avocado, the patterns of neural activity encoding the avocado and retrieval of the kitten must be high.

The study examined two major networks that interfaced with the hippocampus during memory processing. The PM network – which includes the precuneus, posterior cingulate (PCC), retrosplenial cortex (RSC), angular gyrus and the parahippocampal cortex (PHC). The PM network was found to play a key role in event detail recollection and event model processing. In contrast, the AT network comprising the lateral orbifrontal cortex was implicated in processing unitized items and semantic information.

Experiments 1 and 2 showed that multiple retrieval attempts enhanced long-term memory retention of retrieved and non-target objects that shared the same context. Experiment 2 showed that relative to restudy, retrieval enhanced neural reactivation representation of target objects and contextually linked objects. The findings collectively indicated that during recall of a particular object, information reactivation from the broader episode enhanced retention of the recalled and episodically linked information. The findings were consistent with previous observations. By retrieving a single object, people reactivated an entire episode to facilitate the integration of retrieval targets and linked items.

Based on the outcomes, the scientists assumed the possibility of a medial subnetwork involving the PHC and RSC, maintaining a specific sensory contextual representation that was updated with each retrieval attempt. In comparison, the parietal subnetwork maintained a schematic representation of the event. The predictions also aligned with recently published neuroimaging findings.

Recent research has consistently deconstructed the practice of retrieval to strongly enhance long-term retention, albeit poor understanding of neural and cognitive mechanisms driving the enhancement. The study showed that reactivation in the parietal regions of the PM network retrieved target information, alongside information linked within the same episodic content. The findings highlighted the importance of spatiotemporal context in organizing information in episodic memory.

In reality, information experienced within an event is highly structured and ingrained, more so than that seen with the experimental stimuli used in the study. The results captured a fundamental aspect of the daily human experience with memory. Remembering a single detail from the past can have far-reaching effects on retaining an entire event. The findings can be used to devise methods to improve learning, to enhance in patients with amnesia disorders and in general for improved cognition.

Explore further: New insights into the way the brain combines memories to solve problems

More information: Tanya R. Jonker et al. Neural reactivation in parietal cortex enhances memory for episodically linked information, Proceedings of the National Academy of Sciences (2018). DOI: 10.1073/pnas.1800006115

Charan Ranganath et al. Two cortical systems for memory-guided behaviour, Nature Reviews Neuroscience (2012). DOI: 10.1038/nrn3338

Related Stories

New insights into the way the brain combines memories to solve problems

September 19, 2018
Humans have the ability to creatively combine their memories to solve problems and draw new insights, a process that depends on memories for specific events known as episodic memory. But although episodic memory has been ...

Forgetting may help improve memory and learning

June 20, 2018
Forgetting names, skills or information learned in class is often thought of as purely negative. However unintuitive it may seem, research suggests that forgetting plays a positive role in learning: It can actually increase ...

How your brain retrieves a memory when you sense something familiar

July 28, 2016
Several years after graduating, I visited my old university for the first time since leaving. I tried to use the familiar campus ATM, but the PIN I entered was not accepted. It took two failed attempts before I realised that ...

Remembering past events might take place quicker than we thought, research shows

January 5, 2016
Research published in the Journal of Neuroscience has shown that retrieving memories of events from our past may take place quicker than we previously thought - and it is possible to interfere with that process.

New study on nicotinic receptors and LT memory paves way for targeted dementia therapy

March 27, 2018
A new University of Bristol study, which identifies how acetylcholine impacts learning and memory by acting at different receptors, could prove significant in the drive to develop more targeted and effective therapies for ...

Brain injury researchers find retrieval practice improves memory in youth with TBI

December 3, 2014
Brain injury researchers in New Jersey have identified retrieval practice as a useful strategy for improving memory among children and adolescents with traumatic brain injury (TBI).

Recommended for you

Newborn babies' brain responses to being touched on the face measured for the first time

November 16, 2018
A newborn baby's brain responds to being touched on the face, according to new research co-led by UCL.

Precision neuroengineering enables reproduction of complex brain-like functions in vitro

November 14, 2018
One of the most important and surprising traits of the brain is its ability to dynamically reconfigure the connections to process and respond properly to stimuli. Researchers from Tohoku University (Sendai, Japan) and the ...

New brain imaging research shows that when we expect something to hurt it does, even if the stimulus isn't so painful

November 14, 2018
Expect a shot to hurt and it probably will, even if the needle poke isn't really so painful. Brace for a second shot and you'll likely flinch again, even though—second time around—you should know better.

A 15-minute scan could help diagnose brain damage in newborns

November 14, 2018
A 15-minute scan could help diagnose brain damage in babies up to two years earlier than current methods.

New clues to the origin and progression of multiple sclerosis

November 13, 2018
Mapping of a certain group of cells, known as oligodendrocytes, in the central nervous system of a mouse model of multiple sclerosis (MS), shows that they might have a significant role in the development of the disease. The ...

Mutations, CRISPR, and the biology behind movement disorders

November 12, 2018
Scientists at the RIKEN Center for Brain Science (CBS) in Japan have discovered how mutations related to a group of movement disorders produce their effects. Published in Proceedings of the National Academy of Sciences, the ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.