Seizures begin with a muffle

October 9, 2018, Thomas Jefferson University
Seizures begin with a muffle
The signal of inhibitory neurons recorded from pre-surgery microelectrodes during a seizure. Each line represents a single neuron. The study represents the first time inhibitory neurons were seen firing before seizure onset in humans. Credit: Shennan Weiss laboratory, Jefferson (Philadelphia University + Thomas Jefferson University)

Some patients describe epileptic seizures like an earthquake from within, starting slow and growing without their control. To a brain researcher, seizures are an electrical firestorm of neuronal activation in the brain. Now, studies at Jefferson (Philadelphia University + Thomas Jefferson University), have shown that some types of seizure paradoxically begin with a hush: a spike in inhibition. Neurons that dampen neuronal activity may be responsible for starting the large-scale over-activation of a seizure.

"This is the first time to our knowledge that this phenomenon of inhibition at the start of a seizure has been observed in humans," said senior author Shennan Weiss, MD, PhD, Assistant Professor of Neurology and Head of Thomas Jefferson Computational Epilepsy Laboratory at the Vickie & Jack Farber Institute for Neuroscience at Jefferson. "Such a shift in our thinking could change how we go about looking for new treatments for preventing ," said Dr. Weiss, who also treats patients with the disease.

The research was published in the journal Annals of Neurology.

Neurologists have long held the belief that seizures begin as an imbalance of excitatory and that lead to the over-excitation, but it had never been proven experimentally. For the past 20 years or so, researchers working with animals have observed that a burst of inhibition often precedes seizure onset. "Since no one could observe the same in humans, many people assumed this observation was a quirk of drug-induced seizures in animals, and not applicable to humans," said Dr. Weiss.

To tease apart the problem, Dr. Weiss and his team of computational biologists looked at data collected by neurosurgeon collaborators at Jefferson and the University of California at Los Angeles. As part of pre-surgery for patients with epilepsy, surgeons placed electrodes in the brain to determine the exact location of seizures onset. Using this data the researchers were able to capture 13 and measure impulses called action potentials produced by single excitatory and inhibitory neurons. They found that at the beginning of all the seizures, the inhibitory neurons produced bursts of action potentials prior to the excitatory neurons.

Patients often report experiencing an aura before the onset of an epileptic seizure. "We believe that patients experience dyscognition when the inhibitory neurons are activated at the beginning of the seizure," said Dr. Weiss. "This period is characterized by confusion and an inability to talk or form coherent sentences." About 10 seconds after the inhibition, the over-excitation spreads over the brain.

Dr. Weiss thinks that the burst of inhibitory activity might be an attempt to shut down overexcitement in the focal area of the brain. "It's like when you pull the brakes too hard on a bike and you fly over the handlebars," said Dr. Weiss.

There are many types of seizures, but the type described in this paper, the low-voltage fast (LVF) onset seizure, is the most common, and suggests that the results could potentially apply to a large number of seizures. The details will need to be worked out before it can be applied toward new treatments, but the results suggest that the biology of seizures in people may be different than expected, and that targeting inhibitory could offer new avenues for treatment or prevention.

Explore further: Rewiring the brain to fight epilepsy

More information: Bahareh Elahian et al, Low-Voltage Fast Seizures in Humans Begin with Increased Interneuron Firing, Annals of Neurology (2018). DOI: 10.1002/ana.25325

Related Stories

Rewiring the brain to fight epilepsy

August 1, 2018
Researchers in the lab of Associate Professor of Biology Suzanne Paradis have discovered a novel treatment for reducing seizure activity in the brains of rodents, a discovery they hope might one day help people living with ...

Non-epileptic seizure patients getting 'lost in system'

September 24, 2018
About 2,000 patients in Saskatchewan and 72,000 across Canada experience seizure-like episodes unrelated to epilepsy, but nearly half aren't receiving followup care, harming their quality of life and driving up health-care ...

Brain implant could stop epilepsy seizures

August 30, 2018
For many people who suffer from neurological disorders, such as epilepsy, there are no viable treatment options. In our latest research, we developed an implantable device that may one day offer relief. We show that the implant ...

Automated detection of focal epileptic seizures in a sentinel area of the human brain

August 17, 2018
Patients with focal epilepsy that does not respond to medications badly need alternative treatments.

Brain model explores the cause of different epileptic seizure onset patterns

May 4, 2017
At the onset of an epileptic seizure, differing characteristics of brain tissue surrounding the seizure's origin site may determine which of two main patterns of brain activity will be seen, according to a study in PLOS Computational ...

Surprising results from study of non-epileptic seizures

December 2, 2012
A Loyola University Medical Center neurologist is reporting surprising results of a study of patients who experience both epileptic and non-epileptic seizures.

Recommended for you

Study points to possible new therapy for hearing loss

October 15, 2018
Researchers have taken an important step toward what may become a new approach to restore hearing loss. In a new study, out today in the European Journal of Neuroscience, scientists have been able to regrow the sensory hair ...

Sugar, a 'sweet' tool to understand brain injuries

October 15, 2018
Australian researchers have developed ground-breaking new technology which could prove crucial in treating brain injuries and have multiple other applications, including testing the success of cancer therapies.

Scientists examine how neuropathic pain responds to Metformin

October 15, 2018
Scientists seeking an effective treatment for one type of chronic pain believe a ubiquitous, generic diabetes medication might solve both the discomfort and the mental deficits that go with the pain.

Abnormal vision in childhood can affect brain functions

October 13, 2018
A research team has discovered that abnormal vision in childhood can affect the development of higher-level brain areas responsible for things such as attention.

Study: Ketogenic diet appears to prevent cognitive decline in mice

October 12, 2018
We've all experienced a "gut feeling"—when we know deep down inside that something is true. That phenomenon and others (like "butterflies in the stomach") aptly describe what scientists have now demonstrated: that the gut ...

Two seemingly opposing forces in the brain actually cooperate to enhance memory formation

October 12, 2018
The brain allows organisms to learn and adapt to their surroundings. It does this by literally changing the connections, or synapses, between neurons, strengthening meaningful patterns of neural activity in order to store ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.