Study bridges a divide in cell aging in neurodegenerative diseases

November 21, 2018, University of Toronto
From left, doctoral students Amanda Hall and Lauren Ostrowski and Associate Professor Karim Mekhail. Credit: Jim Oldfield

Research from the University of Toronto has shown that in some neurodegenerative diseases, two hallmarks of cell aging – protein aggregation and a type of DNA instability – are linked. They were previously thought to be unconnected.

The researchers used cellular models of amyotrophic lateral sclerosis (ALS) and and found that the gumming up of certain proteins undermines the stability of ribosomal DNA repeats – repetitive genetic sequences essential for manufacturing all proteins and cells.

"We found that shorten the lifespan of the cell by compromising the stability of the highly repetitive ribosomal DNA sequences," says Karim Mekhail, an associate professor in the Faculty of Medicine's department of laboratory medicine and pathobiology who holds the Canada Research Chair in Spatial Genome Organization.

"That these two major mechanisms of cell aging are connected points to strategies that may hit two birds with one stone in neurodegeneration."

The journal Communications Biology published the results earlier this month.

Repetitive DNA sequences comprise over half of the genome in some organisms, and they are essential to cell function. But they are susceptible to reorganization, which can lead to chromosomal rearrangements, premature cell aging and disease.

Mekhail and his team, including doctoral students Lauren Ostrowski and Amanda Hall, first found that trouble-making proteins – which emerge from repetitive DNA sequences called transposons – aggregate in humanized with mutations found in patients suffering from ALS and ataxia. They then mapped how the aggregates destabilize ribosomal DNA repeats and lead to premature yeast cell aging, before confirming the findings in human .

The work took more than four years. "This story was full of surprises," says Mekhail. "The findings may seem obvious in retrospect, but if you'd told us in the beginning that there was crosstalk between aggregation and destabilization of DNA, we'd have thought that was absurd. Lauren and Amanda really had to persevere."

To identify new and urgently needed therapeutic approaches, the are now testing if drugs that disrupt transposon protein aggregates restore genome stability and cell lifespan in various neurodegenerative diseases.

Explore further: Culprit implicated in neurodegenerative diseases also critical for normal cells

More information: Lauren A. Ostrowski et al. Conserved Pbp1/Ataxin-2 regulates retrotransposon activity and connects polyglutamine expansion-driven protein aggregation to lifespan-controlling rDNA repeats, Communications Biology (2018). DOI: 10.1038/s42003-018-0187-3

Related Stories

Culprit implicated in neurodegenerative diseases also critical for normal cells

June 13, 2013
The propensity of proteins to stick together in large clumps—termed "protein aggregation"—is the culprit behind a variety of conditions including Huntington's, Alzheimer's, and mad cow diseases. With this notoriety, protein ...

Researchers reveal unusual chemistry of protein with role in neurodegenerative disorders

July 27, 2017
A common feature of neurodegenerative diseases is the formation of permanent tangles of insoluble proteins in cells. The beta-amyloid plaques found in people with Alzheimer's disease and the inclusion bodies in motor neurons ...

Recommended for you

Wiring diagram of the brain provides a clearer picture of brain scan data

December 14, 2018
Already affecting more than five million Americans older than 65, Alzheimer's disease is on the rise and expected to impact more than 13 million people by 2050. Over the last three decades, researchers have relied on neuroimaging—brain ...

Scientists identify method to study resilience to pain

December 14, 2018
Scientists at the Yale School of Medicine and Veterans Affairs Connecticut Healthcare System have successfully demonstrated that it is possible to pinpoint genes that contribute to inter-individual differences in pain.

Parents' brain activity 'echoes' their infant's brain activity when they play together

December 13, 2018
When infants are playing with objects, their early attempts to pay attention to things are accompanied by bursts of high-frequency activity in their brain. But what happens when parents play together with them? New research, ...

In the developing brain, scientists find roots of neuropsychiatric diseases

December 13, 2018
The most comprehensive genomic analysis of the human brain ever undertaken has revealed new insights into the changes it undergoes through development, how it varies among individuals, and the roots of neuropsychiatric illnesses ...

Researchers find the cause of and cure for brain injury associated with gut condition

December 13, 2018
Using a mouse model of necrotizing enterocolitis (NEC)—a potentially fatal condition that causes a premature infant's gut to suddenly die—researchers at Johns Hopkins say they have uncovered the molecular causes of the ...

Researchers discover abundant source for neuronal cells

December 13, 2018
USC researchers seeking a way to study genetic activity associated with psychiatric disorders have discovered an abundant source of human cells—the nose.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.