'Master key' gene has links to both ASD and schizophrenia

November 5, 2018, Emory University
Credit: CC0 Public Domain

Recent studies of complex brain disorders such as schizophrenia and autism spectrum disorder (ASD) have identified a few "master keys," risk genes that sit at the center of a network of genes important for brain function. Researchers at Emory and the Chinese Academy of Sciences have now created mice partially lacking one of those master keys, called MIR-137, and have used them to identify an angle on potential treatments for ASD.

The results are scheduled for publication in Nature Neuroscience.

Mice partially lacking MIR-137 display learning and memory deficits, and impaired sociability. MIR-137 encodes a microRNA, which regulates hundreds of other genes, many of which are also connected to schizophrenia and .

By treating with papaverine, a vasodilator discovered in the 19th century, scientists could improve the performance of the mice on maze navigation and social behavior tests. Papaverine is an inhibitor of the enzyme Pde10a (phosphodiesterase 10a), which is elevated in mutant mice.

Other Pde10a inhibitors have been tested in schizophrenia clinical trials, but the new results suggest this group of compounds could have potential for some individuals with ASD, says senior author Peng Jin, Ph.D., professor of human genetics at Emory University School of Medicine.

Having just the right level of MIR-137 function is important. Previous studies of people with genetic deletions show that a loss of MIR-137 is connected with intellectual disability and autism spectrum disorder. The reverse situation, in which a genetic variation increases MIR-137 levels, appears to contribute to schizophrenia.

"It's interesting to think about in the context of precision medicine," Jin says. "Individuals with a partial loss of MIR137—either genomic deletions or reduced expression—could potentially be candidates for treatment with Pde10a inhibitors."

To create the mutant mice, Jin's lab teamed up with Dahua Chen, Ph.D. and Zhao-Qian Teng, Ph.D. scientists at the State Key Laboratories of Stem Cell and Reproductive Biology and Membrane Biology, part of the Institute of Zoology, Chinese Academy of Sciences in Beijing. Jin says that generating mice with a heritable disruption of MIR-137 was technically challenging, taking several years.

Mice completely lacking MIR-137 have problems with development and die soon after birth. The effect is similar if the deletion is restricted to the nervous system. Other "knockouts" of microRNA genes have not displayed such distinct post-natal effects, Jin notes. However, the scientists wanted to study animals that had one copy intact—a situation analogous to the humans with ASD.

"Several studies had shown an association between MIR-137 and both ASD and schizophrenia, but it was very important to show that causal relationship," Jin says.

Mice with one copy of MIR-137 disrupted in the brain learn to navigate mazes with more difficulty than controls. They also display increased repetitive behaviors (self-grooming and marble-burying) and show a limited preference to socialize with another mouse rather than an object, and do not discriminate familiar mice from strangers.

The brains of mutant mice have a higher density of dendritic spines, indicating that they have impaired synaptic pruning, a process other researchers have observed is altered in schizophrenia and autism.

Analyzing the genes in brain cells whose activities were most altered by MIR-137 loss allowed the researchers to pinpoint Pde10a. Treating mutant mice with papaverine improved their ability to learn mazes, although it did not restore their performance to that of . In addition, papaverine treatment significantly increased the amounts of time mutant mice interacted with other .

Explore further: Mouse model of intellectual disability isolates learning gene

More information: Ying Cheng et al, Partial loss of psychiatric risk gene Mir137 in mice causes repetitive behavior and impairs sociability and learning via increased Pde10a, Nature Neuroscience (2018). DOI: 10.1038/s41593-018-0261-7

Related Stories

Mouse model of intellectual disability isolates learning gene

February 19, 2018
Adult male mice lacking a gene linked to intellectual disability have trouble completing and remembering mazes, with no changes in social or repetitive behavior, according to new research published in JNeurosci. This animal ...

Promise seen in possible treatment for autism spectrum disorder

November 1, 2017
Human chromosome 16p11.2 deletion syndrome is caused by the absence of about 27 genes on chromosome 16. This deletion is characterized by intellectual disability; impaired language, communication, and socialization skills; ...

Study shows less aggressive behavior toward strangers in autism spectrum disorder model

February 25, 2015
While aggression toward caregivers and peers is a challenge faced by many individuals and families dealing with autism, there has been much speculation in the media over the possibility of generally heightened aggression ...

Imbalances in neural pathways may contribute to repetitive behaviors in autism

April 17, 2017
Genetic studies have linked a number of risk genes to autism spectrum disorder (ASD). Although the complex genetics underlying ASD likely involve interactions between many genes, some risk genes are singular drivers of autism-like ...

Small RNA identified that offers clues for quieting the 'voices' of schizophrenia

November 28, 2016
St. Jude Children's Research Hospital scientists have identified a small RNA (microRNA) that may be essential to restoring normal function in a brain circuit associated with the "voices" and other hallucinations of schizophrenia. ...

Oxidative stress on the brain

August 24, 2017
Smith-Lemli-Opitz syndrome (SLOS) is a rare disease that occurs when patients inherit from both parents defects in the Dhcr7 gene, which encodes the last enzyme in the cholesterol biosynthesis pathway. A large portion of ...

Recommended for you

Cell study reveals how head injuries lead to serious brain diseases

November 16, 2018
UCLA biologists have discovered how head injuries adversely affect individual cells and genes that can lead to serious brain disorders. The life scientists provide the first cell "atlas" of the hippocampus—the part of the ...

Newborn babies' brain responses to being touched on the face measured for the first time

November 16, 2018
A newborn baby's brain responds to being touched on the face, according to new research co-led by UCL.

Precision neuroengineering enables reproduction of complex brain-like functions in vitro

November 14, 2018
One of the most important and surprising traits of the brain is its ability to dynamically reconfigure the connections to process and respond properly to stimuli. Researchers from Tohoku University (Sendai, Japan) and the ...

New brain imaging research shows that when we expect something to hurt it does, even if the stimulus isn't so painful

November 14, 2018
Expect a shot to hurt and it probably will, even if the needle poke isn't really so painful. Brace for a second shot and you'll likely flinch again, even though—second time around—you should know better.

A 15-minute scan could help diagnose brain damage in newborns

November 14, 2018
A 15-minute scan could help diagnose brain damage in babies up to two years earlier than current methods.

New clues to the origin and progression of multiple sclerosis

November 13, 2018
Mapping of a certain group of cells, known as oligodendrocytes, in the central nervous system of a mouse model of multiple sclerosis (MS), shows that they might have a significant role in the development of the disease. The ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.