Researchers use optimized single-cell multi-omics sequencing to better understand colon cancer tumor heterogeneity

November 30, 2018 by Bob Yirka, Medical Xpress report
Cancer — Histopathologic image of colonic carcinoid. Credit: Wikipedia/CC BY-SA 3.0

A team of researchers affiliated with several institutions in China has found that using optimized single-cell multi-omics sequencing better reveals colon cancer tumor heterogeneity. In their paper published in the journal Science, the group describes their unique approach to understanding colorectal cancer progression.

The researchers note that most genetic studies of colorectal cancer progression involve looking at gene expression. They suggest that more study is needed to learn how colorectal tumors metastasize. To that end, they have developed a sequencing method that allows for analyzing , methylation and gene expression simultaneously in —the method combines single-cell sequencing data with information from chromosome conformation, epigenetic data and other characteristics of tumor cells.

This work is the next step in a long-term effort to truly understand the mechanics of metastases, particularly in colorectal tumors. Two years ago, the team published a report on their work involving a single-cell triple omics sequencing technique they had developed called sc Trioseq by which they gathered information from , methylation at CpG sites and copy number alterations from 25 cells obtained from .

In the next stage, the researchers raised the number of cells to 1,900 and improved the efficiency of the detection method. The study consisted of collecting cell samples from 12 patients, 10 of whom provided both primary and metastatic data and analyzing them. Using cell data from both sources allowed the researchers to isolate and identify that had developed from mutations for each patient. They used methylation data and copy number information to identify those lineages, allowing them to track the evolutionary changes they went through as they moved from primary tumor cells to metastatic cells.

The team reports that methylation was consistent among the cells within the same genetic lineage but differed when compared to other lineages—and it was also different from non-tumorous cells just next to the tumor. They also found that six chromosomes showed greater levels of demethylation than did others, three of which had recurrent chromosomal changes. They conclude by suggesting that single cell multi-omics sequencing offers the best opportunity for learning more about tumor progression and the spread of cancer.

Explore further: Two teams independently tease out gene expression patterns in tumor-infiltrating lymphocytes using RNA sequencing

More information: Shuhui Bian et al. Single-cell multiomics sequencing and analyses of human colorectal cancer, Science (2018). DOI: 10.1126/science.aao3791

Related Stories

Two teams independently tease out gene expression patterns in tumor-infiltrating lymphocytes using RNA sequencing

June 27, 2018
Two teams working independently of each other have found that it is possible to tease out gene expression patterns in tumor-infiltrating lymphocytes using single-cell RNA sequencing. The first team, based in Australia, sequenced ...

Single-cell analysis reveals subtypes of colorectal tumors

March 20, 2017
Combining single-cell genomics and computational techniques, a research team including Paul Robson, Ph.D., director of single-cell biology at The Jackson Laboratory (JAX), has defined cell-type composition of cancerous cells ...

Observing the mechanism of metastasis for the first time

August 7, 2018
Metastasis, or the formation of secondary tumors, is a leading contributor to the vast majority of deaths related to cancer. The exact mechanisms for how broken cellular function appears in cells far removed from a cancer's ...

Single-cell RNA sequencing reveals detailed composition of two major types of brain tumor

March 30, 2017
Detailed analysis of two brain tumor subtypes has revealed that they may originate from the same type of neural progenitor cells and be distinguished by gene mutation patterns and by the composition of their microenvironments. ...

New cancer model shows genomic link between early-stage and invasive breast cancer types

January 4, 2018
A new genetic-based model may explain how a common form of early-stage breast cancer known as ductal carcinoma in situ (DCIS) progresses to a more invasive form of cancer say researchers at The University of Texas MD Anderson ...

Recommended for you

Immunotherapy combo not approved for advanced kidney cancer patients on the NHS

December 14, 2018
People with a certain type of advanced kidney cancer will not be able to have a combination of two immunotherapy drugs on the NHS in England.

Scientists identify method to study resilience to pain

December 14, 2018
Scientists at the Yale School of Medicine and Veterans Affairs Connecticut Healthcare System have successfully demonstrated that it is possible to pinpoint genes that contribute to inter-individual differences in pain.

CRISPR joins battle of the bulge, fights obesity without edits to genome

December 13, 2018
A weighty new study shows that CRISPR therapies can cut fat without cutting DNA. In a paper published Dec. 13, 2018, in the journal Science, UC San Francisco researchers describe how a modified version of CRISPR was used ...

Noncoding mutations contribute to autism risk

December 13, 2018
A whole-genome sequencing study of nearly 2,000 families has implicated mutations in 'promoter regions' of the genome—regions that precede the start of a gene—in autism. The study, which appears in the December 14 issue ...

New drug seeks receptors in sarcoma cells, attacks tumors in animal trials

December 13, 2018
A new compound that targets a receptor within sarcoma cancer cells shrank tumors and hampered their ability to spread in mice and pigs, a study from researchers at the University of Illinois reports.

New method for studying ALS more effectively

December 13, 2018
The neurodegenerative disease ALS causes motor neuron death and paralysis. However, long before the cells die, they lose contact with muscles as their axons atrophy. Researchers at Karolinska Institutet in Sweden have now ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.