Novel technique accurately assesses cardiovascular risks

Novel technique accurately assesses cardiovascular risks
Images show volumetric multispectral optoacoustic tomographic (MSOT) imaging setup. A, Diagram illustrates handheld noninvasive scanning procedure, where volumetric MSOT probe is scanned on skin surface around carotid artery bifurcation area. B, Three-dimensional view of reconstructed volumetric MSOT image of carotid bifurcation captured at video rate of 10 Hz in a 44-year-old man. CAB = carotid artery bifurcation, CCA = common carotid artery, ECA = external carotid artery, FB = fiber bundle, ICA = internal carotid artery, LB = laser beam, STA = superior thyroid artery, TA = transducer array, TM = transparent membrane, UW = ultrasound waves, WH = water holder. Credit: Radiological Society of North America

A new noninvasive technique for imaging the carotid artery offers advantages over other imaging methods and could provide an earlier, more accurate assessment of cardiovascular disease risk, according to a study published in the journal Radiology.

The arteries are the located on the left and right side of the neck that bring oxygenated blood to the head. Each artery bifurcates, or forks, in the neck into two branches that form the internal and external carotid arteries. Most ischemic strokes, or strokes related to a build-up of plaque in the arteries, are associated with carotid artery disease originating from the area where the arteries bifurcate.

Imaging techniques like ultrasound, CT and MRI are useful for revealing the extent of narrowing in the carotid , but less helpful in determining the makeup of the plaque itself. This is a crucial limitation because plaque composition is associated with vulnerability to rupture, setting in motion the chain of events that leads to life-threatening strokes.

"Rapid characterization of tissue function and molecular composition is limited with these modalities, which commonly results in poor diagnostic accuracy and ineffective treatments," said study senior author Daniel Razansky, Ph.D., director of the Functional and Molecular Imaging Lab at the University of Zurich and the Swiss Federal Institute of Technology in Zurich.

Novel technique accurately assesses cardiovascular risks
(a, b) Noninvasive volumetric multispectral optoacoustic (OA) tomographic anatomic imaging of carotid artery bifurcation in vivo in a 44-year-old man. (a) Image shows depth characterization. Maximum intensity projections (MIPs) of volumetric reconstructions along z and y directions are color coded to represent depth (in millimeters), where structures in red identify superficial contrast and blue and purple are indicative of deeper structures. (b) MIP of volumetric reconstruction of carotid bifurcation after removal of contrast arising from shallow structures. Orange box in a indicates depth range used for rendering MIP in b. CC = common carotid, CW = carotid wall, EC = external carotid, IC = internal carotid, S = skin. Credit: Radiological Society of North America

Dr. Razansky and colleagues studied a new technique for carotid artery assessment called volumetric multi-spectral optoacoustic tomography (vMSOT). As with ultrasound, vMSOT is performed with a that is moved against the neck. However, vMSOT employs the science of spectroscopy to investigate tissue at a molecular scale. This provides information about the artery that is not attainable with other methods. It also can detect lipids, the and other disease-related biomarkers early enough to provide better treatment options.

"Unlike most other clinical imaging modalities mainly looking at late-stage anatomical manifestations of diseases, vMSOT is capable of sensing specific molecules in tissues without administration of contrast agents," Dr. Razansky said. "In the case of carotid artery disease, assessment of the entire bifurcation area in real time and in 3-D is only possible with vMSOT."

The researchers performed vMSOT imaging on 16 healthy participants and compared results with those from conventional ultrasound. The vMSOT approach was able to noninvasively and instantaneously assess the entire bifurcation area of the carotid artery in three dimensions, thus making it less prone than ultrasound to motion-related, image-blurring artifacts. Researchers said the results point to the tremendous potential of the new approach in the clinic.

Novel technique accurately assesses cardiovascular risks
Images show qualitative comparison of image quality between volumetric multispectral optoacoustic tomographic (hereafter, vMSOT) and B-mode US in two volunteers. Right carotid artery (RCA) and left carotid artery (LCA) are shown in a 31-year-old woman (subject 1) and in a 26-year-old woman (subject 2), respectively. A, vMSOT images of carotid artery bifurcation in coronal view represented in maximum intensity projections (MIPs). B, vMSOT and B-mode US images of carotid bifurcation in sagittal cross-sectional views. Orange and green frames correspond to vMSOT and US images, respectively, where orange dashed lines in A indicate section shown in B. CC = common carotid, EC = external carotid, IC = internal carotid, OA = optoacoustic. Credit: Radiological Society of North America

"The developed handheld vMSOT imaging approach holds promise for rapid volumetric assessment of the carotid artery and plaque vulnerability in an entirely noninvasive manner," Dr. Razansky said. "It also has the additional potential for label-free identification and assessment of clinically-relevant biomarkers of carotid artery disease, which helps with early and accurate diagnosis, timely treatment planning and monitoring."

In the future, vMSOT could be combined with ultrasound for a more comprehensive characterization of the .

"Given its fast imaging performance, excellent molecular contrast, portability and affordability, I truly believe that vMSOT will soon be routinely used in the clinic," Dr. Razansky said. "One day, it may even become as popular as ultrasound."

More information: "Real-time Volumetric Assessment of the Human Carotid Artery: Handheld Multispectral Optoacoustic Tomography," Radiology, 2019.

Journal information: Radiology
Citation: Novel technique accurately assesses cardiovascular risks (2019, February 12) retrieved 28 May 2024 from
This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.

Explore further

Carotid artery MRI improves risk assessment for cardiovascular disease


Feedback to editors