Scientists discover mechanism behind the chemically-induced suppression of fearful memories

fear
Credit: Unsplash/CC0 Public Domain

Tragic events like wars, famines, earthquakes, and accidents create fearful memories in our brain. These memories continue to haunt us even after the actual event has passed. Luckily, researchers from Tokyo University of Science (TUS) have recently been able to understand the hidden biochemical mechanisms involved in the selective suppression of fearful memories, which is called fear extinction. The researchers, who had previously demonstrated fear extinction in mice using the chemically synthesized compound "KNT-127," have now identified the underlying mechanism of this compound's action. Their findings have been published recently in Frontiers in Behavioral Neuroscience.

Prof. Akiyoshi Saitoh, lead author of the study, and Professor at TUS, muses, "Drugs that treat -related diseases like anxiety and must be able to help extinguish fear. We previously reported that KNT-127, a selective agonist of the d-opioid receptor or DOP, facilitates contextual fear extinction in mice. However, its site of action in the brain and the underlying molecular mechanism remained elusive. We therefore investigated and cellular signaling pathways that we assumed would mediate the action of KNT-127 on fear extinction."

"We investigated the molecular mechanism of KNT-127-mediated suppression of fearful memories. We administered KNT-127 to specific brain regions and identified the brain regions involved in promoting fear extinction via delta receptor activation," elaborates Dr. Daisuke Yamada, co-author of the study, and Assistant Professor at TUS.

Using a mouse model, the research team performed fear conditioning test on laboratory mice. During fear conditioning, mice learn to associate a particular neutral conditioned stimulus with an aversive unconditioned stimulus (e.g., a mild electrical shock to the foot) and show a conditioned fear response (e.g., freezing).

After the initial fear conditioning, the mice were re-exposed to the conditioning chamber for six minutes as part of the extinction training. Meanwhile, the fear-suppressing therapeutic "KNT-127" was microinjected into various regions of the brain, 30 minutes prior to re-exposure. The treated brain regions included the basolateral nucleus of the amygdala (BLA), the hippocampus (HPC), and the prelimbic (PL) or infralimbic subregions (IL) of the medial prefrontal cortex. The following day, the treated mice were re-exposed to the chamber for six minutes for memory testing. The fear-suppressing "KNT-127" that infused into the BLA and IL, but not HPC or PL, significantly reduced the freezing response during re-exposure. Such an effect was not observed in mice that did not receive the KNT-127 treatment, thus confirming the fear-suppressing potential of this novel compound.

Chemical compounds known to inhibit the actions of key intracellular signaling pathways like PI3K/Akt and MEK/ERK pathways reversed the , thereby suggesting the key roles of these two pathways in influencing KNT-127-mediated fear extinction.

The first author of the study, Ayako Kawaminami, who is currently pursuing research at TUS, says, "The selective DOP antagonist that we used for pretreatment antagonized the effect of KNT-127 administered into the BLA and IL. Further, local administration of MEK/ERK inhibitor into the BLA and of PI3K/Akt inhibitor into the IL abolished the effect of KNT-127. These findings strongly indicated that the effect of KNT-127 is mediated by MEK/ERK signaling in the BLA, by PI3K/Akt signaling in the IL, and by DOPs in both brain regions. We have managed to show that DOPs play a role in via distinct signaling pathways in the BLA and IL." 

PTSD and phobias are thought to be caused by the inappropriate or inadequate control of fear memories. Currently, serotonin reuptake inhibitors and benzodiazepines are prescribed during therapy. However, many patients do not derive significant therapeutic benefits from these drugs. Therefore, there is an urgent need for the development of new therapeutic agents that have a different mechanism of action from existing drugs.

Dr. Hiroshi Nagase, a Professor at University of Tsukuba and a coauthor of the study, concludes that they "have succeeded in creating KNT-127 by successfully separating convulsion- and catalepsy-inducing actions, which has so far been extremely difficult. Our findings will provide useful and important information for the development of evidence-based therapeutics with a new mechanism of action, that is targeting DOP."    

A team of researchers from Tokyo University of Science #TUS has probed deeper into the workings of KNT-127, a promising therapeutic compound that can help suppress fearful memories. The research team has been successful in discovering the underlying mechanisms of action of this novel compound. This is indeed welcome news for people suffering from painful memories in conditions like PTSD and anxiety disorder. Considering the growing awareness of mental wellness, this study will have huge implications in the field of neurobiology. Credit: Tokyo University of Science (TUS)

More information: Ayako Kawaminami et al, Selective δ-Opioid Receptor Agonist, KNT-127, Facilitates Contextual Fear Extinction via Infralimbic Cortex and Amygdala in Mice, Frontiers in Behavioral Neuroscience (2022). DOI: 10.3389/fnbeh.2022.808232

Citation: Scientists discover mechanism behind the chemically-induced suppression of fearful memories (2022, April 25) retrieved 18 May 2024 from https://medicalxpress.com/news/2022-04-scientists-mechanism-chemically-induced-suppression-memories.html
This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.

Explore further

Masking the memory of fear: Treating anxiety disorders such as PTSD with an opioid

146 shares

Feedback to editors