Brain cell migration during normal development may offer insight on how cancer cells spread

By shedding new light on how cells migrate in the developing brain, researchers at Fred Hutchinson Cancer Research Center also may have found a new mechanism by which other types of cells, including cancer cells, travel within the body. The findings by Jonathan Cooper, Ph.D., member and director of the Hutchinson Center's Basic Sciences Division, and Yves Jossin, Ph.D., a research fellow in Cooper's laboratory, published online April 24 in Nature Neuroscience, could lead to a better understanding of neurological development and, possibly, cancer metastasis.

During normal divide, arrange themselves in appropriate patterns, and specialize to form discrete tissues and organs. For the body to develop properly, cells must coordinate their migratory patterns and the process by which they differentiate, or evolve from less-specialized cells into more-specialized cell types. A lack of such coordination leads to disordered development and, in some cases, cancer.

Jossin and Cooper set out to analyze how cells migrate in the of the developing brain. The cerebral cortex, gray matter of the cerebrum, is the brain's command and control center where cognition and planning occur, and it is particularly well developed in humans.

The cerebral cortex is composed of horizontal layers of , or , which are specialized for different functions and connected vertically into circuits. If some neurons are in the wrong layers, the wiring can be defective and neurological disorders including epilepsy, autism and schizophrenia may result.

In the fetus, the cortex grows "from the inside out" via the sequential addition of new neurons, which move from the inside, pass between neurons in previously established intermediate layers, and form new layers on the outside. How the migrations are regulated remains unclear despite years of study.

Jossin and Cooper now report the discovery of signals that control a particular stage in a cortical neuron's journey. New neurons initially move in a straight line, from the inside to the outside, until they reach a layer called the intermediate zone. This zone contains relatively few neurons but many connecting fibers, or axons. When new neurons reach this layer, they lose their way and start wandering – up, down, left and right, frequently changing direction. When, seemingly by chance, they emerge from the intermediate zone, they realign with their original direction of movement and speed ahead through layers of differentiated neurons towards the outer surface of the cortex.

The researchers aimed to determine how neurons get back on track after they emerge from the chaos of the intermediate zone. They identified a signaling protein, called Reelin, which is made by cells in the outermost layer of the cortex. It has been known for years that mutations in the Reelin gene cause profound cortical layering abnormalities in rodents and people, but it has been unclear which stage of neuron migration goes awry when Reelin is absent.

The new study shows that new neurons respond to Reelin as they emerge from the intermediate zone. "This is remarkable because the top layer of the cortex, where Reelin is made, is widely separated from the top of the intermediate zone, where it acts, so the Reelin protein must be diffuse," Cooper said. "It is also remarkable that Reelin seems not to be a direction signal itself. Rather, Reelin triggers changes in the membranes of the migrating neurons that allow the cells to respond to direction signals."

The researchers show that a membrane protein called N-cadherin increases on the surface of neurons when the neurons encounter Reelin. The surface increase in N-cadherin allows the cell to choose the appropriate direction for its next stage of migration. "This represents a new and surprising function for N-cadherin," Jossin said, "because normally this protein acts as a cellular stabilizer and not as an orchestrator of migration."

For example, elsewhere in the cortex, N-cadherin forms tight adhesions between adjacent cells and prevents them from moving. Indeed, the general role for cadherins in the body is to stabilize sheets of cells and organize tissues by holding cells together.

"The new role for N-cadherin in orienting migrating cells is quite unexpected and suggests that cadherins on the surface of other types of normal or may also be involved in helping them move rather than stay in place," Jossin said. "This finding could provide new clues to how normal and cancerous migrate within the body," he said.

Related Stories

Neuronal migration errors: Right cells, wrong place

Jan 04, 2011

Normally, cortical nerve cells or neurons reside in the brain's gray matter with only a few scattered neurons in the white matter, but some people with schizophrenia have a higher number of neurons in the white matter. Neuronal ...

New study presents surprising view of brain formation

Feb 09, 2011

Embargoed by the journal Neuron until February 9, 2011, noon, Eastern time – A study from The Scripps Research Institute has unveiled a surprising mechanism that controls brain formation. The findings have implications ...

The beginnings of the thinking brain

Jun 28, 2006

Oxford researchers have identified the very first neurons in the human cerebral cortex, the part of the brain that sets us apart from all other animals.

Protein linked to Alzheimer's disease doesn't act alone

Jun 10, 2009

A team of U.S. investigators led by neuroscientists at Georgetown University Medical Center (GUMC) are steadily uncovering the role that amyloid precursor protein (APP) - the protein implicated in development of Alzheimer's ...

Recommended for you

Neuroscientist develops brain vitality index

6 hours ago

Why is it we are happy to talk about our physical health, like exercise and diet but we are not comfortable talking about brain health? One measure of body health is the body mass index (BMI) but what single ...

New tools help neuroscientists analyze 'big data'

Jul 27, 2014

In an age of "big data," a single computer cannot always find the solution a user wants. Computational tasks must instead be distributed across a cluster of computers that analyze a massive data set together. ...

User comments