Similar structures for face selectivity in human and monkey brains

April 28, 2011

(Medical Xpress) -- Face recognition and the interpretation of facial expressions and gaze direction play a key role in guiding the social behavior of human beings, and new study results point to similar mechanisms in macaques. Until now, many scientists have assumed that the capability for face recognition in monkeys is significantly different from that in humans – and that different parts of the brain are involved. Using functional magnetic resonance imaging (fMRI), scientists at the Max Planck Institute for Biological Cybernetics in Tübingen have now discovered that the circuitry for face processing in the brain is remarkably similar in both macaques and humans. Consequently, macaque monkeys could be suitable model organisms for studying human disorders such as autism or prosopagnosia, so-called “face blindness.”

Very early in life children learn to recognize the faces of their parents and other human beings around them. In addition, humans must be able to process the cues from and gaze direction in a matter of seconds. These complex tasks are performed by a number of areas, mainly in the superior temporal sulcus and the ventral temporal cortex. It is here that the fusiform face area (FFA) is located, the most important structure involved in face selectivity in humans.

In previous studies in , only areas in the superior temporal sulcus had shown activity in processing facial information, and it was assumed that this discrepancy resulted from a species difference. “However, macaque monkeys live in groups of many individuals and have sophisticated . Vision is the main part of their communication, so I expected them to have sophisticated brain structures for as well”, says Jozien Goense from the Max Planck Institute for Biological Cybernetics.

Together with her colleagues from the same Institute Shih-Pi Ku and Nikos Logothetis, Director of the Department of Physiology of Cognitive Processes, and Andreas Tolias, now in Houston with Baylor College of Medicine, the Michael E. DeBakey Veterans Affairs Medical Center and Rice University, Jozien Goense mapped the face-processing brain network in macaques. (fMRI) reveals the activity of brain areas at a given time. The scientists made use of an optimized fMRI protocol that overcame the trouble with artifacts encountered in older studies, especially in the important ventral temporal lobe.

In the new experiments, the monkeys were shown pictures of unknown conspecifics displaying different facial expressions and gaze directions. The goal was to activate areas and neuronal structures that respond to identity and social cues. As a control, the responses to monkey faces were compared with reactions to pictures of fruit, houses and the abstract fractal patterns. The scientists found face-selective areas in the superior temporal sulcus, the prefrontal cortex and amygdala, which had been identified in previous studies. In addition, several patches in the ventral temporal lobe, the hippocampus, the entorhinal cortex and medial temporal lobe were shown to be active in the processing of facial information. The experiments were repeated in anesthetized macaques to eliminate the effects of motion and to test whether the activity depended on awake processing. The difference was minimal; the face-selective network was almost identical under anesthesia.

Jozien Goense sees her hypothesis confirmed that it was only technical limitations that led earlier scientists to assume that significantly fewer areas were active in face processing in the monkey brain than the human brain: “We know from our results that the network is larger than previously published. We have discovered several additional areas in the ventral temporal lobe which include a potential homologue of the fusiform face area in humans”, she says. Further studies still need to be done to test whether the similarities in the brain structures involved in face selectivity in humans and could help to investigate certain human illnesses. One example is prosopagnosia, which specifically affects the recognition of faces. The persons concerned are not able to memorize the of others and cannot even recognize their family members by vision alone, while the detailed differentiation of objects or even animals poses no problems.

More information: Shih-Pi Ku, Andreas S. Tolias, Nikos K. Logothetis and Jozien Goense, fMRI of the Face-Processing Network in the Ventral Temporal Lobe of Awake and Anesthetized Macaques, Neuron (2011), doi: 10.1016/j.neuron.2011.02.048

Related Stories

Recommended for you

Erasing unpleasant memories with a genetic switch

June 30, 2016

Researchers from KU Leuven (Belgium) and the Leibniz Institute for Neurobiology (Germany) have managed to erase unpleasant memories in mice using a 'genetic switch'. Their findings were published in Biological Psychiatry.

Motivation to bully is regulated by brain reward circuits

June 29, 2016

Individual differences in the motivation to engage in or to avoid aggressive social interaction (bullying) are mediated by the basal forebrain, lateral habenula circuit in the brain, according to a study conducted at the ...

New clues about the aging brain's memory functions

June 29, 2016

A European study led by Umeå University Professor Lars Nyberg, has shown that the dopamine D2 receptor is linked to the long-term episodic memory, which function often reduces with age and due to dementia. This new insight ...

New technology could deliver drugs to brain injuries

June 28, 2016

A new study led by scientists at the Sanford Burnham Prebys Medical Discovery Institute (SBP) describes a technology that could lead to new therapeutics for traumatic brain injuries. The discovery, published today in Nature ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.