'I can hear a building over there': Researchers study blind people's ability to echolocate

It is common knowledge that bats and dolphins echolocate, emitting bursts of sounds and then listening to the echoes that bounce back to detect objects. What is less well-known is that people can echolocate too. In fact, there are blind people who have learned to make clicks with their mouths and to use the returning echoes from those clicks to sense their surroundings. Some of these individuals are so adept at echolocation that they can use this skill to navigate unknown environments, and participate in activities such as mountain biking and basketball.

Researchers at The University of Western Ontario's Centre for Brain and Mind (London, Ontario, Canada) have recently shown that blind echolocation experts use what is normally the 'visual' part of their brain to process the clicks and echoes. The study, appearing this month in the scientific journal PLoS ONE, is the first to investigate the of natural human echolocation.

Senior author Mel Goodale, Canada Research Chair in Visual Neuroscience, and Director of the Centre for Brain and Mind, says, "It is clear echolocation enables blind people to do things otherwise thought to be impossible without vision and can provide blind and visually-impaired people with a high degree of independence."

Goodale and his team of researchers first made recordings of the clicks and their very faint echoes using tiny in the ears of the blind echolocators as they stood outside and tried to identify different objects such as a car, a flag pole, and a tree. The researchers then played the recorded sounds back to the echolocators while their was being measured in Western's state-of-the-art 3T (fMRI) brain scanner.

Remarkably, when the echolocation recordings were played back to the blind experts, not only did they perceive the objects based on the echoes, but they also showed activity in those areas of their brain that normally process in sighted people. Most interestingly, the brain areas that process auditory information were no more activated by sound recordings of outdoor scenes containing echoes than they were by sound recordings of outdoor scenes with the echoes removed.

When the same experiment was carried out with sighted control people who did not echolocate, these individuals could not perceive the objects, and neither did their brain show any echo-related activity, suggesting visual brain areas play an important role for in blind people.

According to Goodale, this research will provide a deeper understanding of brain function, particularly how the senses are processed and what happens neurologically when one sense is lost.

More information: Thaler L, Arnott SR, Goodale MA (2011) Neural Correlates of Natural Human Echolocation in Early and Late Blind Echolocation Experts. PLoS ONE 6(5): e20162. doi:10.1371/journal.pone.0020162

Provided by University of Western Ontario

5 /5 (1 vote)

Related Stories

Bats' echolocation recorded for human exploit

May 11, 2010

Bats' remarkable ability to 'see' in the dark uses the echoes from their own calls to decipher the shape of their dark surroundings. This process, known as echolocation, allows bats to perceive their surroundings ...

Spanish scientists develop echolocation in humans

Jun 30, 2009

A team of researchers from the University of Alcalá de Henares (UAH) has shown scientifically that human beings can develop echolocation, the system of acoustic signals used by dolphins and bats to explore their surroundings. ...

Recommended for you

New ALS associated gene identified using innovative strategy

1 hour ago

Using an innovative exome sequencing strategy, a team of international scientists led by John Landers, PhD, at the University of Massachusetts Medical School has shown that TUBA4A, the gene encoding the Tubulin Alpha 4A protein, ...

Can bariatric surgery lead to severe headache?

1 hour ago

Bariatric surgery may be a risk factor for a condition that causes severe headaches, according to a study published in the October 22, 2014, online issue of Neurology, the medical journal of the American Academy of Neurol ...

Bipolar disorder discovery at the nano level

2 hours ago

A nano-sized discovery by Northwestern Medicine scientists helps explain how bipolar disorder affects the brain and could one day lead to new drug therapies to treat the mental illness.

Brain simulation raises questions

5 hours ago

What does it mean to simulate the human brain? Why is it important to do so? And is it even possible to simulate the brain separately from the body it exists in? These questions are discussed in a new paper ...

Human skin cells reprogrammed directly into brain cells

5 hours ago

Scientists have described a way to convert human skin cells directly into a specific type of brain cell affected by Huntington's disease, an ultimately fatal neurodegenerative disorder. Unlike other techniques ...

User comments