Study shows H1N1 microneedle vaccine protects better than injection

July 12, 2011
Vaccine delivered to the skin of mice using a microneedle patch provides better protection against H1N1 influenza virus than a vaccine delivered through injection, researchers have found. (Georgia Tech Photo: Gary Meek)

(Medical Xpress) -- A vaccine delivered to the skin using a microneedle patch gives better protection against the H1N1 influenza virus than a vaccine delivered through subcutaneous or intramuscular injection, researchers from Emory University and the Georgia Institute of Technology have found. Their research is published online in the Journal of Infectious Diseases.

Mice given a single H1N1 vaccine through the skin using a coated metal microneedle patch as well as mice vaccinated through subcutaneous injection were 100 percent protected against a lethal challenge six weeks after vaccination. However, when challenged with the H1N1 virus six months later, the injected mice had a 60 percent decrease in antibody production against the virus and extensive lung inflammation. Mice that were vaccinated with microneedles, on the other hand, maintained high levels of protection and after six months, with no signs of .

"A major goal of development has been to confer strong immune responses, including immunological memory and cellular immune responses for long-term protection, and to limit virus spread after infection," said first author Dimitrios Koutsonanos, MD, post-doctoral fellow of microbiology and immunology at Emory University School of Medicine.

The research team also included Ioanna Skountzou, MD, PhD, Richard Compans, PhD, Maria del Pilar Martin, PhD, and Joshy Jacob, PhD, from Emory, and Georgia Tech bioengineers Mark Prausnitz, PhD, and Vladimir Zarnitsyn, PhD.

Researchers already have found that intramuscular injection is not the most efficient way to deliver vaccines. The muscles have a low concentration of cells needed to relay immune signals and activate a T-cell response, including , macrophages, and MHC class II-expressing cells. The skin, however, contains a rich network of antigen-presenting cells, including macrophages, Langerhans cells and dermal dendritic cells that activate cytokines and chemokines – immune signaling cells responsible for initiating an immune response.

The Emory/Georgia Tech research team previously reported that delivery of seasonal influenza vaccine through the skin using antigen-coated metal microneedle patches or dissolving elicited strong immune responses that can confer protection at least equal to conventional intramuscular injections. The team has developed dissolving microneedle technology that could be used in easy-to-administer, painless patches.

"The pandemic H1N1 A/California/04/09 continues to be the predominant strain," said lead researcher Ioanna Skountzou, MD, PhD, assistant professor of microbiology and immunology at Emory University School of Medicine. "Our research shows that skin-based vaccination, made possible through microneedle technology, may now be a viable and more effective alternative to intramuscular injection for H1N1 flu and other strains as well."

"Microneedle delivery also offers other logistical advantages that make this method attractive for influenza vaccination, such as inexpensive manufacturing, small size for easy storage and distribution, and simple administration that might enable self-vaccination to increase patient coverage," said Prausnitz.

Explore further: Tattooing improves response to DNA vaccine

Related Stories

Tattooing improves response to DNA vaccine

February 7, 2008

A tattoo can be more than just a fashion statement – it has potential medical value, according to an article published in the online open access journal, Genetic Vaccines and Therapy.

Painless 'microneedle' patch may take the sting out of shots

August 19, 2009

Good news for people fearful of needles and squeamish of shots: Scientists at the 238th National Meeting of the American Chemical Society report the design of a painless patch that may someday render hypodermic needles — ...

2009 H1N1 vaccine protects against 1918 influenza virus

June 15, 2010

Researchers at Mount Sinai School of Medicine have determined people who were vaccinated against the 2009 H1N1 influenza virus may also be protected against the lethal 1918 Spanish influenza virus, which killed more than ...

Recommended for you

Team discovers how Zika virus causes fetal brain damage

August 24, 2016

Infection by the Zika virus diverts a key protein necessary for neural cell division in the developing human fetus, thereby causing the birth defect microcephaly, a team of Yale scientists reported Aug. 24 in the journal ...

Zika infection may affect adult brain cells

August 18, 2016

Concerns over the Zika virus have focused on pregnant women due to mounting evidence that it causes brain abnormalities in developing fetuses. However, new research in mice from scientists at The Rockefeller University and ...

Immune breakthrough: Unscratching poison ivy's rash

August 23, 2016

We all know that a brush with poison ivy leaves us with an itchy painful rash. Now, Monash University and Harvard researchers have discovered the molecular cause of this irritation. The finding brings us a step closer to ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

that_guy
not rated yet Jul 12, 2011
and ummm...it'll make it a little easier to vaccinate kids.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.