Hormone reduces risk of heart failure from chemotherapy

August 4, 2011

Recent studies have shown that the heart contains cardiac stem cells that can contribute to regeneration and healing during disease and aging. However, little is known about the molecules and pathways that regulate these cells. Now, a new study utilizing a heart failure model is providing insight into one way to coax the cardiac stem cells into repairing the damaged heart. The research, published by Cell Press in the August 2011 issue of the journal Cell Stem Cell, finds that low doses of erythropoietin (EPO), a hormone best known for controlling the production of red blood cells, might reduce the risk of heart failure associated with some anticancer therapies.

Chemotherapy with doxorubicin (DOX) has been used effectively to treat a broad range of cancers but is limited because of severe side effects, most notably heart failure. Likewise, blocking STAT3, an important factor that drives has been associated with . To learn more about the activity of cardiac under these conditions, senior study author, Dr. Denise Hilfiker-Kleiner from the Medical School Hannover in Germany, and colleagues studied cardiac stem cells in mice that were lacking the STAT3 gene in their hearts or were treated with DOX.

Dr. Hilfiker-Kleiner and colleagues observed that in both groups of mice, cardiac stem cells displayed an impaired ability to form new blood vessels which are essential for oxygen delivery to the . Both sets of mice produced less EPO in their heart muscle than untreated controls. The researchers went on to demonstrate that EPO binds to cardiac stem cells and is required to maintain the signaling molecules necessary for production of new blood vessels. Importantly, when the mice were given a synthetic EPO derivative at a low dose which did not affect red blood cell production, stem cell differentiation to blood vessel cells was restored and cardiac function was preserved. "Short-term EPO administration at low doses seems an attractive avenue to pursue for protecting the heart during chemotherapy and might have broader applications in cardiac regeneration," concludes Dr. Hilfiker-Kleiner.

Explore further: Genetically engineered cardiac stem cells repaired damaged mouse heart

Related Stories

Recommended for you

Formaldehyde damages proteins, not just DNA

September 29, 2016

The capacity of formaldehyde, a chemical frequently used in manufactured goods such as automotive parts and wood products, to damage DNA, interfere with cell replication and cause cancer inspired new federal regulations this ...

Synthetic 3D-printed material helps bones regrow

September 28, 2016

A cheap and easy to make synthetic bone material has been shown to stimulate new bone growth when implanted in the spines of rats and a monkey's skull, researchers said Wednesday.

Epigenetic clock predicts life expectancy

September 28, 2016

UCLA geneticist Steve Horvath led a team of 65 scientists in seven countries to record age-related changes to human DNA, calculate biological age and estimate a person's lifespan. A higher biological age—regardless of chronological ...

Engineered blood vessels grow in lambs

September 27, 2016

In a hopeful development for children born with congenital heart defects, scientists said Tuesday they had built artificial blood vessels which grew unaided when implanted into lambs, right into adulthood.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.