Hormone reduces risk of heart failure from chemotherapy

August 4, 2011

Recent studies have shown that the heart contains cardiac stem cells that can contribute to regeneration and healing during disease and aging. However, little is known about the molecules and pathways that regulate these cells. Now, a new study utilizing a heart failure model is providing insight into one way to coax the cardiac stem cells into repairing the damaged heart. The research, published by Cell Press in the August 2011 issue of the journal Cell Stem Cell, finds that low doses of erythropoietin (EPO), a hormone best known for controlling the production of red blood cells, might reduce the risk of heart failure associated with some anticancer therapies.

Chemotherapy with doxorubicin (DOX) has been used effectively to treat a broad range of cancers but is limited because of severe side effects, most notably heart failure. Likewise, blocking STAT3, an important factor that drives has been associated with . To learn more about the activity of cardiac under these conditions, senior study author, Dr. Denise Hilfiker-Kleiner from the Medical School Hannover in Germany, and colleagues studied cardiac stem cells in mice that were lacking the STAT3 gene in their hearts or were treated with DOX.

Dr. Hilfiker-Kleiner and colleagues observed that in both groups of mice, cardiac stem cells displayed an impaired ability to form new blood vessels which are essential for oxygen delivery to the . Both sets of mice produced less EPO in their heart muscle than untreated controls. The researchers went on to demonstrate that EPO binds to cardiac stem cells and is required to maintain the signaling molecules necessary for production of new blood vessels. Importantly, when the mice were given a synthetic EPO derivative at a low dose which did not affect red blood cell production, stem cell differentiation to blood vessel cells was restored and cardiac function was preserved. "Short-term EPO administration at low doses seems an attractive avenue to pursue for protecting the heart during chemotherapy and might have broader applications in cardiac regeneration," concludes Dr. Hilfiker-Kleiner.

Explore further: Genetically engineered cardiac stem cells repaired damaged mouse heart

Related Stories

Recommended for you

Researchers grow retinal nerve cells in the lab

November 30, 2015

Johns Hopkins researchers have developed a method to efficiently turn human stem cells into retinal ganglion cells, the type of nerve cells located within the retina that transmit visual signals from the eye to the brain. ...

Shining light on microbial growth and death inside our guts

November 30, 2015

For the first time, scientists can accurately measure population growth rates of the microbes that live inside mammalian gastrointestinal tracts, according to a new method reported in Nature Communications by a team at the ...

Functional human liver cells grown in the lab

November 26, 2015

In new research appearing in the prestigious journal Nature Biotechnology, an international research team led by The Hebrew University of Jerusalem describes a new technique for growing human hepatocytes in the laboratory. ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.