Decoding vaccination: Researchers reveal genetic underpinnings of response to measles vaccine

September 22, 2011

Researchers at Mayo Clinic are hacking the genetic code that controls the human response to disease vaccination, and they are using this new cipher to answer many of the deep-seated questions that plague vaccinology, including why patients respond so differently to identical vaccines and how to minimize the side effects to vaccination.

Led by Gregory Poland, M.D., researchers in Mayo's Group are publishing results of two that identify mutations linked to immune response to the . They appear in the journal .

"We are trying to understand, to the maximum extent possible, how a person's individual affects response to vaccination," says Dr. Poland.

These and similar studies will likely allow physicians to prescribe appropriate doses and timing of vaccines based on routine blood tests in the near future. Longer-reaching implications of the vaccine group's work include the development of more effective vaccines and, perhaps someday, the ability to construct personalized vaccines.

"Vaccination is the single most important and far-reaching practice in medicine. By the time a child enters school in the United States, they have received upwards of 20 shots," says Dr. Poland. "In no other field of medicine do we do exactly the same thing to everyone — and we do it everywhere in the world."

Doctors and epidemiologists have long been puzzled about the genetic underpinnings to the fact that up to 10 percent of recipients fail to respond to the first dose of the measles vaccine, while another 10 percent generate extremely high levels of measles antibodies. The remaining 80 percent fall somewhere in the middle.

"We have found that two doses of the vaccine seem to be sufficient to immunize the vast majority of the population against measles, so we do it to everybody even though it's not technically necessary," says Dr. Poland. "If we could tell, based on a genetic test of every patient, who would need one dose and who might need two or three, imagine the implications not only for measles vaccines, but for every vaccine."

Millions of dollars could be saved by avoiding additional and unnecessary vaccine doses, not to mention the pain and suffering that could be spared by administering to young children the minimum number of shots necessary.

Early results published in Vaccine contain an exhaustive statistical analysis of the genes coding for the Human Leukocyte Antigen (HLA) system and other known cytokine/cytokine receptor genes. Dr. Poland's team was the first to single out all DNA base-pair mutations in these genes that have a measurable effect on the immune system's response to measles vaccination.

Any mutations found to play a role in the immune system response to the measles vaccine were identified and cataloged with the study subject's corresponding race.

Called SNPs (pronounced "snips"), these tiny genetic mutations represent the smallest possible change to a person's and offer clues to explaining why children of some racial and ethnic groups respond better to vaccination than other groups.

Ultimately, Dr. Poland and his team seek to assemble a comprehensive matrix of all the genetic that affect to vaccination on all of the roughly 30,000 human protein-coding genes. Such a library could direct physicians toward predicting exactly how individuals will respond to different vaccines.

"Imagine setting up an array of dominoes the size of a small city, and then depending on where you knock one over, predicting how the rest will fall," says Dr. Poland. "That is what we are trying to do in understanding how single genes, and networks of genes, control and determine our immune responses to vaccines — and, hence, whether we are protected or not."

Explore further: Mayo Clinic physician: Mistaken fear of measles shot has 'devastating' effect

Related Stories

Recommended for you

Zika virus infection alters human and viral RNA

October 20, 2016

Researchers at University of California San Diego School of Medicine have discovered that Zika virus infection leads to modifications of both viral and human genetic material. These modifications—chemical tags known as ...

Food-poisoning bacteria may be behind Crohn's disease

October 19, 2016

People who retain a particular bacterium in their gut after a bout of food poisoning may be at an increased risk of developing Crohn's disease later in life, according to a new study led by researchers at McMaster University.

Neurodevelopmental model of Zika may provide rapid answers

October 19, 2016

A newly published study from researchers working in collaboration with the Regenerative Bioscience Center at the University of Georgia demonstrates fetal death and brain damage in early chick embryos similar to microcephaly—a ...

Scientists uncover new facets of Zika-related birth defects

October 17, 2016

In a study that could one day help eliminate the tragic birth defects caused by Zika virus, scientists from the Florida campus of The Scripps Research Institute (TSRI) have elucidated how the virus attacks the brains of newborns, ...

Ebola drug ZMapp may help, but is not a miracle cure

October 13, 2016

ZMapp, once touted as a miraculous "secret serum" against the deadly Ebola virus, has shown some success but fell short of the bar for effectiveness in a clinical trial, researchers said Wednesday.


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.