Researchers develop drug-like molecules to improve schizophrenia treatment

September 22, 2011 By Bill Snyder
Vanderbilt drug discovery scientist Chris Tarr, Ph.D., prepares for a chemical synthesis in a glove box, which is free of reactive gases such as oxygen and water vapor that can interfere with chemical reactions. Credit: Dana Thomas/Vanderbilt Photography

Researchers at Vanderbilt University have identified chemical compounds that could lead to a major advance in the treatment of schizophrenia.

In a transaction announced this week, Vanderbilt has licensed the compounds to Karuna Pharmaceuticals in Boston, Mass., for further development leading to human testing.

All current anti-psychotic medications act by binding to serotonin and dopamine in the brain to help control and , but they provide little relief of other serious symptoms, including and the inability to pay attention or make decisions. As a result, many patients have difficulty holding a job or living independently. In addition, current drugs have serious side effects.

The new Vanderbilt compounds work in a fundamentally different way than existing medications, by inhibiting glycine transporter one (GlyT1), an action that allows for more normal function of involved in .

“The potential of these new compounds to ameliorate the devastating social and cognitive deficits of schizophrenia, which do not respond to currently available medications, is very exciting,” said National Institute of Mental Health (NIMH) Director Thomas R. Insel, M.D.

The novel compounds were developed by Jeffrey Conn, Ph.D., and Craig Lindsley, Ph.D., co-directors of the Vanderbilt Center for Neuroscience Discovery (VCNDD), and their colleagues in the VCNDD, part of Vanderbilt University Medical Center.

“We are delighted to have the opportunity to partner with VCNDD to help these drugs realize their full potential, to bring a valuable new treatment to patients and families suffering with this disabling disease,” commented Karuna CEO Edmund Harrigan, Ph.D., former executive vice president of Worldwide Business Development at Pfizer.

Schizophrenia is a chronic disabling mental illness that affects more than 3 million Americans according to the NIMH, and 24 million people worldwide, according to the World Health Organization. The worldwide market for antipsychotic drugs exceeds $20 billion a year.

The Vanderbilt GlyT1 inhibitors were discovered and developed with support from the NIMH, which in 2010 awarded Vanderbilt a five-year, $10 million grant to establish a National Cooperative and Development Group, targeting new schizophrenia therapies.

The work is now sufficiently far enough along to hand off to Karuna Pharmaceuticals, a Boston- based company focused on developing breakthrough therapies for schizophrenia.

Conn and Lindsley’s colleagues in the Vanderbilt Center For Neuroscience Drug Discovery on the schizophrenia program include Carrie Jones, Ph.D., the center’s director of in vivo pharmacology; Colleen Niswender, Ph.D., director of molecular pharmacology; and J. Scott Daniels, Ph.D., director of drug metabolism and pharmacokinetics.

It can cost over a billion dollars to bring a drug to market. Cuts in health care reimbursement for medications could make it even more difficult for pharmaceutical companies to recoup that investment. Some firms already are downsizing their research operations as patent protection ends for some of their best-selling brand name products.

That’s where academic medical centers can help. Vanderbilt is uniquely positioned to undertake early stage drug discovery, in part because of its strength in clinical pharmacology, its investment in research infrastructure including high-throughput screening, its ability to attract government, foundation and corporate support and its recruitment of top-notch scientists.

“This work shows how publicly funded basic research can foster the identification of novel medication targets and promising candidate compounds that industry can then take forward,” Insel said. “It is a wonderful example of translational research with the potential to change lives.”

Explore further: Schizophrenia misunderstood, psychiatrist says

Related Stories

Schizophrenia misunderstood, psychiatrist says

May 6, 2011

(Medical Xpress) -- Most people have heard the term "schizophrenia” and are aware that it’s a mental disorder. Unfortunately, a UC Health psychiatrist says, few people actually understand what schizophrenia is or ...

New drug-like molecule to treat fragile X Syndrome

September 16, 2011

Researchers at Vanderbilt University Medical Center, in collaboration with Seaside Therapeutics in Cambridge, Mass., have achieved a milestone in the development of a potential new treatment for fragile X syndrome, the most ...

Recommended for you

We've all got a blind spot, but it can be shrunk

August 31, 2015

You've probably never noticed, but the human eye includes an unavoidable blind spot. That's because the optic nerve that sends visual signals to the brain must pass through the retina, which creates a hole in that light-sensitive ...

Biologists identify mechanisms of embryonic wound repair

August 31, 2015

It's like something out of a science-fiction movie - time-lapse photography showing how wounds in embryos of fruit flies heal themselves. The images are not only real; they shed light on ways to improve wound recovery in ...

New 'Tissue Velcro' could help repair damaged hearts

August 28, 2015

Engineers at the University of Toronto just made assembling functional heart tissue as easy as fastening your shoes. The team has created a biocompatible scaffold that allows sheets of beating heart cells to snap together ...

Fertilization discovery: Do sperm wield tiny harpoons?

August 26, 2015

Could the sperm harpoon the egg to facilitate fertilization? That's the intriguing possibility raised by the University of Virginia School of Medicine's discovery that a protein within the head of the sperm forms spiky filaments, ...

Research identifies protein that regulates body clock

August 26, 2015

New research into circadian rhythms by researchers at the University of Toronto Mississauga shows that the GRK2 protein plays a major role in regulating the body's internal clock and points the way to remedies for jet lag ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.