Progression of lung fibrosis blocked in mouse model

October 5, 2011

A study by researchers at the University of California, San Diego School of Medicine may lead to a way to prevent the progression, or induce the regression, of lung injury that results from use of the anti-cancer chemotherapy drug Bleomycin. Pulmonary fibrosis caused by this drug, as well as Idiopathic Pulmonary Fibrosis (IPF) from unknown causes, affect nearly five million people worldwide. No therapy is known to improve the health or survival of patients.

Their research shows that the RSK-C/EBP-Beta phosphorylation pathway may contribute to the development of lung injury and fibrosis, and that blocking this phosphorylation -- a in which proteins and receptors are switched on or off -- improved Bleomycin-induced in mice. The study appears on-line October 5 in Proceedings of the Library of Science (PloS ONE).

Bleomycin is a common chemotherapy drug used to treat many forms of cancer, according to study authors Martina Buck, PhD, associate professor of medicine, and Mario Chojkier, MD, professor of medicine, both researchers at UC San Diego Moores Cancer Center and the VA San Diego Healthcare System. "Unfortunately, use of Bleomycin has damaging side effects, including lung fibrosis. We are hopeful that this discovery could provide a way to stop such lung damage so that could better tolerate this chemotherapy," said Buck.

The downstream molecular mechanism that causes Bleomycin-induced lung fibrosis remained unknown. The scientists set out to identify the specific signaling involving a single amino acid within a specific domain of one protein that could be blocked the half the progression of such injury, in order to design effective targeted therapeutics.

They found that blocking RSK phosphorylation of a called C/EBP-Beta on the RSK macromolecule Thr217 with either a single or a blocking peptide ameliorated the progression of lung injury and fibrosis induced by Bleomycin in mice.

"We hypothesized that this pathway was critical given similarities between liver and lung fibrogenesis. RSK plays an important role in both the macrophage inflammatory function and survival of activated liver myofibroblasts -- cells that contribute to maintenance and tissue metabolism," said Buck. "Therefore, we proposed that a similar signaling mechanism is also responsible for lung injury and fibrosis."

By identifying the peptide that shuts down this process, the researchers were essentially able to sequester a small piece of an important regulatory protein, C/EBP Beta, responsible for fibrosis, thereby stopping phosphorylation. "Basically, the kinase protein gets hung up, trying again and again -- unsuccessfully -- to 'turn on' the fibrous growth," Buck added.

In addition, phosphorylation of human C/EBP-Beta was induced in human lung fibroblasts in culture and in situ in lungs of patients with severe lung fibrosis, but not in control lungs, suggesting that this signaling pathway may be also relevant in human and fibrosis.

The researchers add that it is premature to assess whether this pathway will provide an effective therapeutic target. However, blocking progression of lung fibrosis could decrease the need for lung transplantation, since IPF is the main indication for lung transplants worldwide.

Explore further: Researchers show that fibrosis can be stopped, cured and reversed

Related Stories

Study sheds light on deadly lung disease

April 14, 2008

Systemic sclerosis (SSc), also known as scleroderma, is characterized by the formation of fibrosis, or scar tissue, on internal organs as well as the skin. Beyond its disfiguring symptoms, SSc is associated with a high rate ...

Scarred lungs leave trail of beta arrestins

March 28, 2011

Targeting a family of signaling proteins called beta arrestins may stop the life-threatening scarring and thickening of lungs associated with pulmonary fibrosis, reports a new Science study in mice.

Recommended for you

Basic research fuels advanced discovery

August 26, 2016

Clinical trials and translational medicine have certainly given people hope and rapid pathways to cures for some of mankind's most troublesome diseases, but now is not the time to overlook the power of basic research, says ...

New method creates endless supply of kidney precursor cells

August 25, 2016

Salk Institute scientists have discovered the holy grail of endless youthfulness—at least when it comes to one type of human kidney precursor cell. Previous attempts to maintain cultures of the so-called nephron progenitor ...

New avenue for understanding cause of common diseases

August 25, 2016

A ground-breaking Auckland study could lead to discoveries about many common diseases such as diabetes, cancer and dementia. The new finding could also illuminate the broader role of the enigmatic mitochondria in human development.

Strict diet combats rare progeria aging disorders

August 25, 2016

Mice with a severe aging disease live three times longer if they eat thirty percent less. Moreover, they age much healthier than mice that eat as much as they want. These are findings of a joint study being published today ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.