A second 'bad' gene is linked to damaged cell buildup, paralysis in ALS

Following a major Northwestern Medicine breakthrough that identified a common converging point for all forms of amyotrophic lateral sclerosis (ALS and Lou Gehrig's disease), a new finding from the same scientists further broadens the understanding of why cells in the brain and spinal cord degenerate in the fatal disease.

Less than three months ago, Northwestern research found that the crucial for cells in the brain and spinal cord was broken in people with ALS. And one mutated gene had a key role. Like a loafing worker, it wasn't doing its job to recycle damaged cells.

Now, scientists have discovered a second -- a new loafing worker -- in the same recycling pathway. The finding is reported in .

"Now that we have two bad players, it shines more light on this broken pathway," said senior author Teepu Siddique, M.D., the Les Turner ALS Foundation/Herbert C. Wenske Professor of the Davee Department of Neurology and Clinical Neurosciences at Northwestern's Feinberg School and a at Northwestern Memorial Hospital. "This gives us a clear to develop to try to fix this problem. It strengthens our belief that this broken system is at the heart of ALS."

The new "bad player" is called sequestosome1. The previously identified mutated gene is ubiquilin2. Because these two genes aren't doing their jobs to recycle damaged proteins, those proteins – as well as sequestosome1 and ubiquilin2 -- accumulate abnormally in the motor neurons in the and cortical and hippocampal neurons in the brain. The protein accumulations resemble twisted skeins of yarn -- characteristic of ALS -- and cause the degeneration of the neurons.

In the new study, sequestosome1 genetic mutations were identified in 546 ALS patients; 340 with an inherited form of the disease, called familial, and 206 with a non-inherited form of the disease, called sporadic.

About 90 percent of ALS is sporadic and 10 percent is familial. To date, mutations in about 10 genes, several of which were discovered at Northwestern, including SOD1 and ALSIN, account for about 30 percent of classic familial ALS, noted Faisal Fecto, M.D., study lead author and a PhD candidate in neuroscience at Feinberg.

ALS affects an estimated 350,000 people worldwide, including children and adults, with about 50 percent of people dying within three years of its onset. In the motor disease, people progressively lose muscle strength until they become paralyzed and can no longer move, speak, swallow and breathe. ALS/dementia targets the frontal and temporal lobes of the brain, affecting patients' judgment, the ability to understand language and to perform basic tasks like planning what to wear or organizing their day.

The discovery of the breakdown in recycling may also have a wider role in other neurodegenerative diseases, particularly the dementias. These include Alzheimer's disease and frontotemporal dementia as well as Parkinson's disease, all of which are characterized by aggregations of proteins, Siddique said. The removal of damaged or misfolded proteins is critical for optimal cell functioning, he noted.

Related Stories

Researchers discover genetic link between both types of ALS

May 05, 2010

Researchers from Northwestern University Feinberg School of Medicine have discovered a link between sporadic and familial forms of amyotrophic lateral sclerosis (ALS), a neurodegenerative disease also known as Lou Gehrig's ...

International ALS gene search begins

May 16, 2006

U.S. scientists are leading the first international gene search for typical ALS -- amyotrophic lateral sclerosis, also known as Lou Gehrig's disease.

Genetics of ALS progression

Jun 01, 2008

An upcoming paper in the June 1 issue of G&D, from Drs. Hidenori Ichijo and Hideki Nishitoh (University of Tokyo) and colleagues, lends new and valuable insight into the genetics of ALS.

Recommended for you

A nucleotide change could initiate fragile X syndrome

12 hours ago

Researchers reveal how the alteration of a single nucleotide—the basic building block of DNA—could initiate fragile X syndrome, the most common inherited form of intellectual disability. The study appears ...

Gene clues to glaucoma risk

Aug 31, 2014

Scientists on Sunday said they had identified six genetic variants linked to glaucoma, a discovery that should help earlier diagnosis and better treatment for this often-debilitating eye disease.

Mutation disables innate immune system

Aug 29, 2014

A Ludwig Maximilian University of Munich team has shown that defects in the JAGN1 gene inhibit the function of a specific type of white blood cells, and account for a rare congenital immune deficiency that ...

Study identifies genetic change in autism-related gene

Aug 28, 2014

A new study from Bradley Hospital has identified a genetic change in a recently identified autism-associated gene, which may provide further insight into the causes of autism. The study, now published online in the Journal of ...

NIH issues finalized policy on genomic data sharing

Aug 27, 2014

The National Institutes of Health has issued a final NIH Genomic Data Sharing (GDS) policy to promote data sharing as a way to speed the translation of data into knowledge, products and procedures that improve health while ...

User comments