Engineered, drug-secreting blood vessels reverse anemia in mice

Patients who rely on recombinant, protein-based drugs must often endure frequent injections, often several times a week, or intravenous therapy. Researchers at Children's Hospital Boston demonstrate the possibility that blood vessels, made from genetically engineered cells, could secrete the drug on demand directly into the bloodstream. In the November 17 issue of the journal Blood, they provide proof-of-concept, reversing anemia in mice with engineered vessels secreting erythropoietin (EPO).

The technology could potentially be used to deliver other proteins such as and Factor IX for patients with hemophilia, alpha interferon for and for multiple sclerosis, says the study's principal investigator, Juan Melero-Martin, PhD, of the Department of Cardiac Surgery at Children's.

Such drugs are currently made in bioreactors by engineered cells, and are very expensive to make in large amounts. "The here is, 'why don't we instruct your own cells to be the factory?'" says Melero-Martin, also an assistant professor at Harvard Medical School.

The researchers created the drug-secreting vessels by isolating endothelial colony-forming cells from human blood and inserting a gene instructing the cells to produce EPO. They then added , suspended the cells in a gel, and injected this mixture into the mice, just under the skin. The cells spontaneously formed networks of blood vessels, lined with the engineered . Within a week, the vessels hooked up with the animals' own vessels, releasing EPO into the bloodstream.

Tests showed that the drug circulated throughout the body and reversed anemia in the mice, both induced by radiation (as often occurs in cancer patients) and by loss of (modeling ). Mice with the vessel implants had significantly higher hematocrits (a measure of concentration) and recovered from anemia more quickly than controls.

The system also had a built-in on/off control: the inserted EPO-encoding gene was linked to a repressor protein that prevented it from being turned on unless the mice were given the oral drug doxycycline (added to their drinking water). Doxycycline disabled the repressor protein, allowing EPO to be made. When doxycycline was added to the water on a weekly on/off schedule, the animals' hematocrit fluctuated accordingly. When hematocrit reached a normal level, the system could be switched off by simply giving them plain water.

Melero-Martin and colleagues are looking at ways to deliver doxycycline through the skin to avoid exposing the whole body to an antibiotic. There are also other ways to design the genetic on/off control, using synthetic systems or even regulatory elements used naturally by the body – sensing blood oxygen levels and stimulating EPO production when oxygen levels dip.

A traditional barrier to gene therapy has been getting the genetically altered cells to engraft and stay in place. Blood-vessel implants are an ideal platform technology for gene therapy applications whose goal is systemic drug delivery, says Melero-Martin.

"Blood vessels are one of the few tissues where we have good control over engraftment," he says. "Endothelial cells are easily isolated from blood, are good at assembling themselves into blood vessels, and are ideal for releasing compounds into the bloodstream, since they line the blood vessels."

The lab is interested in trying this system with other therapeutic proteins, and is also exploring ways to get cells to release therapeutics at a moment's notice by getting accumulating stores in advance that could be released upon the proper signal, as beta cells in the pancreas do with insulin, for example.

In addition, Melero-Martin wants to explore regenerative medicine applications, creating blood vessels with genetic instructions to produce factors that attract stem cells or induce to differentiate.

Related Stories

Hormone reduces risk of heart failure from chemotherapy

Aug 04, 2011

Recent studies have shown that the heart contains cardiac stem cells that can contribute to regeneration and healing during disease and aging. However, little is known about the molecules and pathways that regulate these ...

Anemia drugs under scrutiny

Mar 13, 2008

U.S. drug regulators are contemplating further restrictions on the use of drugs to combat anemia in cancer patients.

A new way to boost red blood cell numbers

Jan 10, 2008

A common treatment for anemia — a deficiency in red blood cells (rbcs) caused by their insufficient production, excessive destruction, or excessive loss — is administration of recombinant erythropoietin (Epo), a hormone ...

Researchers find master gene behind blood vessel development

Feb 04, 2009

In a first of its kind discovery, University of Minnesota researchers have identified the "master gene" behind blood vessel development. Better understanding of how this gene operates in the early stages of development may ...

Recommended for you

Small RNAs in blood may reveal heart injury

1 hour ago

(Medical Xpress)—Like clues to a crime, specific molecules in the body can hint at exposure to toxins, infectious agents or even trauma, and so help doctors determine whether and how to treat a patient. ...

Researchers uncover clues to flu's mechanisms

5 hours ago

A flu virus acts like a Trojan horse as it attacks and infects host cells. Scientists at Rice University and Baylor College of Medicine have acquired a clearer view of the well-hidden mechanism involved.

User comments