New findings about the way cells work could lead to a test and therapy for kidney failure caused by E. coli

January 10, 2012

Ever since the water supply in Walkerton, Ont., was contaminated by E. coli in 2000, Dr. Philip Marsden has been trying to figure out just how a toxin released by that particular strain of the bacteria causes kidney damage in children.

Now Dr. Marsden and his team based at St. Michael's Hospital and the University of Toronto, led by graduate student Tania Petruzziello-Pellegrini, together with an international team of collaborators, have made about the basic workings of endothelial cells that could lead to a diagnostic test for the serious known as (HUS) and a possible treatment.

Endothelial cells line the inside of blood vessels and are the cells most severely affected in HUS, one of the most common causes of sudden onset kidney failure in children.

His work took a sudden twist in May 2011, when an E. coli outbreak swept northern Germany and researchers discovered that a different strain of the bacteria was producing the identical toxin. This time the HUS mainly affected adults, especially women, and was associated with severe kidney failure and strokes.

Dr. Marsden's team extracted from healthy people and exposed them to the toxin in a culture dish. They discovered a biological pathway never before known to have played a role in the development of HUS.

Specifically, they found that the toxin can increase the level of a , namely SDF-1, and its receptor, CXCR4. Chemokines are small secreted proteins that stimulate cells to move or migrate. CXCR4 was already known to stimulate the release and migration of the precursors of from bone marrow, to change how blood vessels grow and to help the enter cells.

Dr. Marsden has found that too much communication between SDF-1 and CXCR4 molecules can also impact the development of HUS in animals and humans. His team made two important discoveries, published in The :

  • injecting the drug plerixafor/AMD3100 (sold under the brand name Mozobil) into mice exposed to the E. coli toxin changed their survival rate and helped improve the HUS, suggesting future therapy options for humans. The drug blocks SDF-1 action on cells that express CXCR4. The drug is used to mobilize precursor stem cells from the bone marrow in some bone marrow transplant recipients during the treatment of non-Hodgkin lymphoma and multiple myeloma.
  • blood tests taken from children with E. coli showed that those who went on to develop HUS had higher levels of the protein SDF-1—as much as four times higher than other children with E. coli who did not go on to develop HUS. This suggests that a blood test could be used to predict who is most likely to develop the potentially fatal HUS, meaning they could be monitored more closely.
Dr. Marsden, who is a nephrologist, said a safe water supply and clean food supply chain is the most important step in preventing HUS caused by E. coli.

"If we can measure SDF-1 levels in real time during an E. coli outbreak and confirm these findings, then we have a strong case for a trial of plerixafor/AMD3100 in patients with toxin-producing E. coli to see if it prevents or improves cases of HUS," he said.

Related Stories

Recommended for you

Experimental MERS vaccine shows promise in animal studies

July 28, 2015

A two-step regimen of experimental vaccines against Middle East respiratory syndrome (MERS) prompted immune responses in mice and rhesus macaques, report National Institutes of Health scientists who designed the vaccines. ...

Can social isolation fuel epidemics?

July 21, 2015

Conventional wisdom has it that the more people stay within their own social groups and avoid others, the less likely it is small disease outbreaks turn into full-blown epidemics. But the conventional wisdom is wrong, according ...

Lack of knowledge on animal disease leaves humans at risk

July 20, 2015

Researchers from the University of Sydney have painted the most detailed picture to date of major infectious diseases shared between wildlife and livestock, and found a huge gap in knowledge about diseases which could spread ...

IBD genetically similar in Europeans and non-Europeans

July 20, 2015

The first genetic study of inflammatory bowel disease (IBD) to include individuals from diverse populations has shown that the regions of the genome underlying the disease are consistent around the world. This study, conducted ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.