New study supports view that Lewy bodies are not the primary cause of cell death in Parkinson's Disease

The pathology of Parkinson's disease is characterized by a loss of dopamine-producing neurons in the pars compacta of the substantia nigra (SN), an area of the brain associated with motor control, along with the development of α-synuclein (αS) protein in the form of Lewy bodies (LB) in the neurons that survive. The spread of LB pathology is thought to progress along with the clinical course of Parkinson's disease, although recent studies suggest that they are not the toxic cause of cell death. A new study published in The Journal of Parkinson's Disease finds no support for a primary pathogenic role of LBs, as neither their distribution nor density was associated with the severity of nigral cell loss.

"We investigated the relationship between nigral dopaminergic , distribution and density of α-synuclein immunoreactive LBs, and the duration of motor symptoms in 97 patients with Parkinson's disease," explains lead investigator Andrew J. Lees, MD, of Queen Square Brain Bank for Neurological Disorders and the Reta Lila Weston Institute for Neurological Studies, UCL Institute of Neurology, London, UK. "Despite the reasonably close correlation between neuronal density in SN and severity of bradykinesia and rigidity in Parkinson's disease, our results suggest that nigral cell loss is gradual and there is considerable variability, which may explain the clinical heterogeneity."

Researchers confirmed that both neuronal number and density in SN in Parkinson's disease decrease over time. The density of nigral was estimated to decrease by 2% each year after confirmation of the clinical diagnosis of Parkinson's disease, but showed marked heterogeneity across patients. Some patients with longer duration of illness still had a significant number of preserved nigral neurons at the time of death. An average of 15% of surviving nigral neurons contained LBs and the age-adjusted proportion of LB-bearing neurons appeared relatively stable through the disease duration. "This could be explained by a passive 'one-pass' phenomenon where the LBs appear at the beginning of the disease and then decrease at the same rate as nigral neurons are lost, or alternatively that a dynamic 'turnover' occurs with some LBs continuously produced and destroyed at the same rate," explains Dr. Lees.

Nigral neuron density was unrelated to the Braak PD stage of the disease (i.e. distribution of LBs in the brain) or to cortical LB densities. "In our view, the fact that neither the widespread regional distribution of LBs nor increased cortical LB densities were found directly linked with pars compacta nigral cell loss lends support to the view that they are not the primary cause of the pathological process leading to in vulnerable regions in the in Parkinson's disease," concludes Dr. Lees.

More information: The article is "Disentangling the Relationship between Lewy Bodies and Nigral Neuronal Loss in Parkinson's Disease" by Laura Parkkinen, Sean S O'Sullivan, Catherine Collins, Aviva Petrie, Janice L. Holton, Tamas Revesz, and Andrew J. Lees. Journal of Parkinson's Disease. 1(2011) 277-286. DOI 10.3233/JPD-2011-11046

add to favorites email to friend print save as pdf

Related Stories

Recommended for you

Mutation may cause early loss of sperm supply

15 minutes ago

Brown University biologists have determined how the loss of a gene in male mice results in the premature exhaustion of their fertility. Their fundamental new insights into the complex process of sperm generation ...

No more bleeding for 'iron overload' patients?

2 hours ago

Hemochromatosis (HH) is the most common genetic disorder in the western world, and yet is barely known. Only in the US 1 in 9 people carry the mutation (although not necessarily the disease).

3-D printing offers innovative method to deliver medication

7 hours ago

3-D printing could become a powerful tool in customizing interventional radiology treatments to individual patient needs, with clinicians having the ability to construct devices to a specific size and shape. That's according ...

Mystery of the reverse-wired eyeball solved

Feb 27, 2015

From a practical standpoint, the wiring of the human eye - a product of our evolutionary baggage - doesn't make a lot of sense. In vertebrates, photoreceptors are located behind the neurons in the back of the eye - resulting ...

Neurons controlling appetite made from skin cells

Feb 27, 2015

Researchers have for the first time successfully converted adult human skin cells into neurons of the type that regulate appetite, providing a patient-specific model for studying the neurophysiology of weight ...

User comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.