Potential treatment target for KRAS-mutated colon cancer found

February 16, 2012

Researchers from the Massachusetts General Hospital (MGH) Cancer Center have identified a new potential strategy for treating colon tumors driven by mutations in the KRAS gene, which usually resist both conventional and targeted treatments. In a paper appearing in the Feb. 17 issue of Cell, the team reports that targeting a later step in the pathway leading from KRAS activation to tumor growth may be able to halt the process.

"Not all KRAS-mutant colon cancers are the same," says Daniel Haber, MD, PhD, director of the MGH Cancer Center and co-corresponding author of the Cell report. "About half seem to be very dependent on the KRAS mutation for their survival, whereas the other half can continue growing even when KRAS is suppressed. In the KRAS-dependent tumors, we identified how the mutation augments a well known to be involved in colon cancer and identified a key step toward that pathway which, if suppressed, can induce KRAS-dependent to undergo apoptosis or programmed ."

Mutations that activate KRAS expression are common in several – most frequently colorectal and lung cancers – and are known to indicate treatment resistance. Drugs that directly target KRAS activity have not been successful, and attempts to identify other potential targets have been challenging, since KRAS may function differently in different cancers. The MGH team first set out to determine the percentage of KRAS-mutant tumors that depend on the presence of the mutation for their growth.

Analysis of a large panel of KRAS-mutant tumor cell lines revealed that about half of them die when KRAS-expression is blocked. More detailed analysis of the KRAS-dependent tumors identified several overexpressed genes, and found that blocking expression of a growth-factor-associated enzyme called TAK1 was the most effective way of inducing tumor cell death. The researchers then showed that treatment with a TAK1 inhibitor led to the death of cultured KRAS-dependent cells and reduced the size of KRAS-dependent tumors implanted under the skin of mice. Further exploration revealed that KRAS activation contributes to tumor development through a pathway involving both TAK1 and the signaling molecule BMP, which serves to augment the Wnt pathway that is known to be involved in both embryonic development and cancer.

"Not all genes that are mutated in cancer can be directly targeted by drugs, but this study shows that if you understand the interrelationships between all the signaling pathways in a particular type of tumor, you may uncover a vulnerability that allows you to bypass the 'undruggable target'," says Haber, who is the Kurt J. Isselbacher/Peter D. Schwartz Professor of Oncology at Harvard Medical School and a Howard Hughes Medical Institute Investigator.

"The TAK1 inhibitor we used in this study is not suitable for human administration, but pharmaceutical companies have small-molecule TAK1 inhibitors which have not yet been developed because their potential application was not clear," Haber adds. "Now we need to establish dosage levels where these or related drugs can work against KRAS-dependent colon cancers without being toxic. Those studies, combined with better understanding of the mechanisms underlying this pathway and the consequences of its suppression, will bring us closer to planning for clinical trials."

Explore further: EGFR essential for the development of pancreatic cancer

Related Stories

EGFR essential for the development of pancreatic cancer

September 15, 2011

The epidermal growth factor receptor (EGFR) gene is essential for KRAS-driven pancreatic cancer development, according to study results presented at the Second AACR International Conference on Frontiers in Basic Cancer Research, ...

Combination therapies for drug-resistant cancers

October 10, 2011

Some cancers can be effectively treated with drugs inhibiting proteins known as receptor tyrosine kinases, but not those cancers caused by mutations in the KRAS gene. A team of researchers led by Jeffrey Engelman, at Massachusetts ...

Antifolates show promise against NSCLC subtype

November 14, 2011

Patients with non-small cell lung cancer who have mutations in the KRAS gene should respond well to the antifolate class of drugs, according to results of a recent study conducted by Quintiles comparing human lung cancer ...

Gene linked to pancreatic cancer growth, study finds

January 31, 2012

A mutant protein found in nearly all pancreatic cancers plays a role not only in the cancer's development but in its continued growth, according to a new study from University of Michigan Comprehensive Cancer Center researchers. ...

Recommended for you

Researchers thwart cancer cells by triggering 'virus alert'

August 27, 2015

Working with human cancer cell lines and mice, researchers at the Johns Hopkins Kimmel Cancer Center and elsewhere have found a way to trigger a type of immune system "virus alert" that may one day boost cancer patients' ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.