What does chronic stress in adolescence mean at the molecular level?

Chronic stress has a more powerful effect on the brain during adolescence than in adulthood and now there's proof at the molecular level, according to findings published in Neuron by University at Buffalo researchers.

"We have identified a causal link between molecules and behaviors involved in responses," says Zhen Yan, PhD, a professor in the Department of Physiology and Biophysics in the UB School of Medicine and Biomedical Sciences. "It's the first time that the loss of glutamate receptor has been causally linked to the negative effects of chronic or repeated stress."

The UB research bolsters the emerging understanding among that the glutamate system is a key player in mental illness and, thus, is critical to understanding how to better treat disorders like depression, anxiety and schizophrenia.

Yan and her colleagues wanted to better understand the of stress, about which little is known. She and her colleagues had previously found that helps sharpen memory (see related story from 2009). Now they have found that chronic stress has the opposite effect.

The UB research was conducted on male rats at an age that corresponds to adolescence in humans, a period when the brain is highly sensitive to stress. This is especially true of the prefrontal cortex, which doesn't fully mature until age 25 in humans and which undergoes dramatic change during adolescence. The prefrontal cortex is referred to as the "CEO" of the brain, controlling , decision-making and attention.

This video is not supported by your browser at this time.

In response to repeated stress, Yan and her colleagues found there was a loss of glutamate receptor expression and function in the prefrontal cortex. That loss resulted in a significant impairment in the ability of the adolescent animals to remember and recognize objects they had previously seen. The same was not seen in the similarly stressed adults.

"Because dysfunction in the has been implicated in stress-related mental illness, this research identifying how stress affects prefrontal cortical functions will help further unravel how and why mental illnesses occur and how to treat them," says Yan.

In the same paper, the researchers report that by disrupting the enzymes that trigger loss of glutamate receptor expression, they were able to prevent the cognitive impairment induced by repeated stress exposure.

As a result, the UB researchers have discovered that there may be a way to prevent the detrimental effects of .

Many antipsychotic drugs currently on the market do somehow affect the glutamate system. Yan and her UB colleagues recently published research in Molecular Pharmacology, showing how one of the newer antipsychotics, lurasidone, (trade name Latuda) does just that. But, she notes, many of these drugs also affect other important neurotransmitter systems as well.

"If, based on this research, we can begin to target the glutamate system in a more specific and effective way, we might be able to develop better drugs to treat serious mental illness," she says.

The research is especially significant because with some mental disorders, such as schizophrenia, onset typically occurs in late adolescence.

"While there have been many behavioral studies about stress, understanding stress at a molecular level is key to developing strategies to prevent stress-induced behavioral deficits," says Yan. "In the end, it has to be boiled down to molecules. Without knowing why something happens at a molecular level, you cannot do anything about it."

More information: Yuen et al.: "Repeated Stress Causes Cognitive Impairment by Suppressing Glutamate Receptor Expression and Function in Prefrontal Cortex." DOI:10.1016/j.neuron.2011.12.033

Related Stories

Short stressful events may improve working memory

Jul 23, 2009

Experiencing chronic stress day after day can produce wear and tear on the body physically and mentally, and can have a detrimental effect on learning and emotion. However, acute stress -- a short stressful incident -- may ...

New Study Examines 'Brain's Own Marijuana'

May 16, 2007

A researcher at the University at Buffalo's Research Institute on Addictions (RIA) is investigating the "brain's own marijuana" -- called endocannabinoid -- in the regulation of stress, stress-related behavior and anxiety. ...

Stress may increase risk for Alzheimer's disease

May 26, 2011

Stress promotes neuropathological changes that are also seen in Alzheimer's disease. Scientists from the Max Planck Institute of Psychiatry in Munich have discovered that the increased release of stress hormones in rats leads ...

Mechanism sheds light on how the brain adapts to stress

Jan 25, 2012

Scientists now have a better understanding of the way that stress impacts the brain. New research, published by Cell Press in the January 26 issue of the journal Neuron, reveals pioneering evidence for a new mechanism of str ...

Recommended for you

Birthday matters for wiring-up the brain's vision centers

16 hours ago

Researchers at the University of California, San Diego School of Medicine have evidence suggesting that neurons in the developing brains of mice are guided by a simple but elegant birth order rule that allows them to find ...

How is depression related to dementia?

Jul 30, 2014

A new study by neuropsychiatric researchers at Rush University Medical Center gives insight into the relationship between depression and dementia. The study is published in the July 30, 2014, online issue of Neurology, the me ...

User comments

Adjust slider to filter visible comments by rank

Display comments: newest first

HealingMindN
not rated yet Mar 07, 2012
I agree with the diagnosis, but disagree with the treatment. Feed the drugs to your own kids, but make sure they don't use the toilet because they will poison our drinking water. Thanks.