The secrets behind stress-induced illness

December 22, 2010
Researchers use the labyrinth test to gauge the anxiety of a mouse. Credit: Max Planck Institute of Psychiatry

(PhysOrg.com) -- Both humans and animals have different reactions to stress. Ongoing exposure to stress causes some individuals to show symptoms of disease, while others are resilient and do not become ill. For a long time, the reasons behind these different reactions have been unclear. Now, scientists working with mice at the Max Planck Institute of Psychiatry have identified the molecular composition of the AMPA receptor, a common binding site in the central nervous system, as a possible cause of the differences. The neurotransmitter glutamate, which is responsible for the mediation of nerve impulses, binds to this receptor. In future, this discovery may help to predict individual risk for stress-related diseases.

Everyone reacts differently to stress: While ongoing strain or even a one-off, highly , for example a traumatic experience, may give rise to a psychiatric illness such as depression or post-traumatic stress disorder in some individuals, others remain healthy. In all this, resilience to stress is largely determined by an individual’s biological make-up. However, the molecular mechanisms involved have been largely unknown to date.

Working with mice, a research group headed by Matthias Schmidt at Munich's Max Planck Institute of Psychiatry has discovered that stress resilience is influenced by the composition of the AMPA receptor in the brain. The receptor is composed of four subunits, GluR1 to GluR4, and acts as a binding partner for the . As an ion channel, it mediates the transmission of electric impulses between nerve cells and thus can influence perception, feelings, reactions and behavior. The composition of the AMPA receptor is determined by both genetic and epigenetic (or environmental) factors.

The specific composition of the receptor in terms of subunits GluR1 and GluR2 is important for its ability to allow calcium ions to flow into the cell, triggering an electrical impulse and altering neuronal communication in the brain. The researchers have shown that stress-vulnerable mice have a low proportion of GluR1 and a high proportion of GluR2. Stress-resilient mice, in contrast, have only a low proportion of GluR2.

In this study, the scientists subjected young mice to social stress for several weeks by exposing the small groups to new members every three to four days, so that the hierarchical structures of each group had to be fought out afresh on each occasion. This leads to a measurable hormonal stress reaction which subsides in stress-resilient animals when the cause of stress is removed. In stress-vulnerable animals, however, the stress hormones remain elevated, as in the case of patients with depression.

It is interesting to note that behavioural studies reveal that the composition of the AMPA-receptor, and therefore stress resilience, correlates with measurable changes to short-term memory. Consequently, even in the absence of , a GluR2-rich AMPA receptor leads to altered neuronal activity and poor memory in mice. If it were possible to use this correlation as a biomarker in humans to determine the composition of the AMPA receptor, it could help to predict individual risk for stress-related diseases. Further studies are planned to investigate whether specific enhancement of the AMPA receptor function would lend itself to future therapeutic interventions.

More information: Mathias V. Schmidt, et al. Individual stress Vulnerability Is Predicted by Short-Term Memory and AMPA Receptor Subunit Ratio in the Hippocampus, Journal of Neuroscience, Advance online publication, December 15, 2010


Related Stories

Recommended for you

Activating MSc glutamatergic neurons found to cause mice to eat less

December 13, 2017
(Medical Xpress)—A trio of researchers working at the State University of New York has found that artificially stimulating neurons that exist in the medial septal complex in mouse brains caused test mice to eat less. In ...

Scientists discover blood sample detection method for multiple sclerosis

December 13, 2017
A method for quickly detecting signs of multiple sclerosis has been developed by a University of Huddersfield research team.

LLNL-developed microelectrodes enable automated sorting of neural signals

December 13, 2017
Thin-film microelectrode arrays produced at Lawrence Livermore National Laboratory (LLNL) have enabled development of an automated system to sort brain activity by individual neurons, a technology that could open the door ...

Discovery deepens understanding of brain's sensory circuitry

December 12, 2017
Because they provide an exemplary physiological model of how the mammalian brain receives sensory information, neural structures called "mouse whisker barrels" have been the subject of study by neuroscientists around the ...

Intermittent fasting found to increase cognitive functions in mice

December 12, 2017
(Medical Xpress)—The Daily Mail spoke with the leader of a team of researchers with the National Institute on Aging in the U.S. and reports that they have found that putting mice on a diet consisting of eating nothing every ...

Neuroscientists show deep brain waves occur more often during navigation and memory formation

December 12, 2017
UCLA neuroscientists are the first to show that rhythmic waves in the brain called theta oscillations happen more often when someone is navigating an unfamiliar environment, and that the more quickly a person moves, the more ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.