Learning mechanism of the adult brain revealed

They say you can't teach an old dog new tricks. Fortunately, this is not always true. Researchers at the Netherlands Institute for Neuroscience have now discovered how the adult brain can adapt to new situations. The Dutch researchers' findings are published on Wednesday in the prestigious journal Neuron. Their study may be significant in the treatment of neurodevelopmental disorders such as epilepsy, autism and schizophrenia.

Our information in of . The cells communicate and excite one another through special connections, called . Young brains are capable of forming many new synapses, and they are consequently better at learning new things. That is why we acquire vital skills – walking, talking, hearing and seeing – early on in life. The adult brain stabilises the synapses so that we can use what we have learned in childhood for the rest of our lives.

Earlier research found that approximately one fifth of the synapses in the brain inhibit rather than excite other nerve-cell activity. Neuroscientists have now shown that many of these inhibitory synapses disappear if the adult brain is forced to learn new skills. They reached this conclusion by labelling inhibitory synapses in mouse brains with fluorescent proteins and then tracking them for several weeks using a specialised microscope. They then closed one of the mice's eyes temporarily to accustom them to seeing through just one eye. After a few days, the area of the brain that processes information from both eyes began to respond more actively to the open eye. At the same time, many of the inhibitory synapses disappeared and were later replaced by new synapses.

Inhibitory synapses are vital for the way networks function in the brain. "Think of the excitatory synapses as a road network, with traffic being guided from A to B, and the inhibitory synapses as the matrix signs that regulate the traffic," explains research leader Christiaan Levelt. "The inhibitory synapses ensure an efficient flow of traffic in the brain. If they don't, the system becomes overloaded, for example as in epilepsy; if they constantly indicate a speed of 20 kilometres an hour, then everything will grind to a halt, for example when an anaesthetic is administered. If you can move the signs to different locations, you can bring about major changes in traffic flows without having to entirely reroute the road network."

Inhibitory synapses play a hugely influential role on learning in the young brain. People who have – for example epilepsy, but also autism and – may have trouble forming inhibitory synapses. The discovery that the is still capable of pruning or forming these synapses offers hope that pharmacological or genetic intervention can be used to enhance or manage this process. This could lead to important guideposts for treating the above-mentioned neurological disorders, but also repairing damaged brain tissue.

add to favorites email to friend print save as pdf

Related Stories

Rare cell prevents rampant brain activity

Mar 02, 2007

One of the mysteries of the brain is how it avoids ending up in a state of chaos, something which happens only on exceptional occasions, when it can lead to epileptic fits. Scientists at Karolinska Institutet have now uncovered ...

Researchers uncover steps in synapse building, pruning

Nov 16, 2011

Like a gardener who stakes some plants and weeds out others, the brain is constantly building networks of synapses, while pruning out redundant or unneeded synapses. Researchers at The Jackson Laboratory led by Assistant ...

Astrocytes affect brain's information signaling

Jun 14, 2010

Astrocytes are the most common type of cell in the brain and play an important role in the function of neurons - nerve cells. New research from the University of Gothenburg, Sweden, shows that they are also directly involved ...

Recommended for you

Study links enzyme to autistic behaviors

21 hours ago

Fragile X syndrome (FXS) is a genetic disorder that causes obsessive-compulsive and repetitive behaviors, and other behaviors on the autistic spectrum, as well as cognitive deficits. It is the most common ...

A new cause of mental disease?

Jul 23, 2014

Astrocytes, the cells that make the background of the brain and support neurons, might be behind mental disorders such as depression and schizophrenia, according to new research by a Portuguese team from ...

Molecular basis of age-related memory loss explained

Jul 22, 2014

From telephone numbers to foreign vocabulary, our brains hold a seemingly endless supply of information. However, as we are getting older, our ability to learn and remember new things declines. A team of ...

The neurochemistry of addiction

Jul 22, 2014

We've all heard the term "addictive personality," and many of us know individuals who are consistently more likely to take the extra drink or pill that puts them over the edge. But the specific balance of ...

User comments